Room-scale Magnetoquasistatic Wireless Power Transfer Using a Cavity-Based Multimode Resonator
Takuya Sasatani, Alanson Sample and Yoshihiro Kawahara
Abstract
Magnetoquasistatic wireless power transfer can be used to charge and power electronic devices such as smartphones and small home appliances. However, existing coil-based transmitters, which are composed of wire conductors, have a limited range. Here we show that multimode quasistatic cavity resonance can provide room-scale wireless power transfer. The approach uses multidirectional, widely distributed currents on conductive surfaces that are placed around the target volume. It generates multiple, mutually unique, three-dimensional magnetic field patterns, where each pattern is attributed to different eigenmodes of a single room-scale resonator. Using these modes together, a power delivery efficiency exceeding 37.1% can be achieved throughout a 3 m × 3 m × 2 m test room. With this approach, power exceeding 50 W could potentially be delivered to mobile receivers in accordance with safety guidelines.