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Abstract—The proliferation of mobile devices in consumer
electronics, IoT, and healthcare sectors has sparked considerable
interest in wireless localization. While antenna array systems
have demonstrated promise for wireless localization, they often
entail high costs, intricate system designs, lengthy integration
periods, and specialized packet formats. This study employs a 16-
element L-shaped antenna array paired with a 2-channel 2MHz
receiver, utilizing affordable and readily available components to
localize incoming packets. The proposed approach calculates the
2D Angle of Arrival (AoA) of incoming signals using a custom
Phase Difference Matching (PDM) algorithm. Additionally, a
non-parallel wave depth estimator infers depth information of
the signal source by learning phase difference trends. The result
shows the system achieves median AoA error of 2.53 degrees
horizontally and 1.88 degrees vertically, with an average depth
estimation error of 1.07 m. This approach demonstrates the
potential for 3D wireless localization of commonly available RF
devices, through an N-element 2D phased array paired with a
cost-effective commodity receiver.

Index Terms—AoA Estimation, Indoor Localization

I. INTRODUCTION

Wireless localization is an emerging technology that em-
powers various location-based services. These services include
indoor navigation [1], asset tracking [2], healthcare [4], [5],
augmented reality [6], [7], and smart home applications [3].
Over time, researchers have developed different techniques to
locate wireless devices, relying on factors such as Received
Signal Strength Indicator (RSSI) [11], [12], Angle of Arrival
(AoA) [13]–[15], [19], and Time Difference of Arrival (TDoA)
[9], [10] of the RF signal. Striking the right balance between
localization accuracy, complexity, cost, and compatibility with
existing devices is a goal for both academia and industry.

Among these techniques, AoA strikes a middle ground by
offering better localization results than RSSI while demanding
less hardware precision compared to TDoA. AoA-based sys-
tems calculate the angle of incoming RF signals using phased
antenna arrays. By analyzing the phase differences of the RF
signal simultaneously received by separate antennas, the Radio
Frequency (RF) signal’s AoA can be determined. The more
antennas the system has, the more accurate the AoA estimation
is. However, challenges emerge as the number of antennas
increases. In typical AoA measurement systems, each antenna
requires a dedicated RF chain, which is all-time synchronized,
significantly inflating the cost as the number of antennas in the
array increases. To address this challenge, a high-speed RF
switch is employed to connect multiple antennas sequentially
to a single receiver channel [14], [18]. Nevertheless, as the

receiver collects the RF signal from one antenna at a time,
phase measurements from asynchronous samples can contain
carrier frequency offsets (CFO) that affect AoA calculations.
Existing solutions either require modifications to the packet
structure or involve signal accumulation across multiple pack-
ets to provide a single AoA estimation [16]. Unfortunately,
these approaches may not be compatible with existing con-
sumer hardware or may slow down system response times.
Additionally, achieving synchronization with the RF switch
demands extra hardware and receiver modifications, adding to
system costs and complexity. Lastly, attempts to perform 3D
wireless device localization using AoA from a single receiver
either suffer from limitations in lower accuracy or necessitate
deploying multiple antenna arrays at various locations within
the space, which can hinder system deployment and usability
[15], [17].

This paper proposes a cost-effective solution utilizing af-
fordable and readily available components to achieve precise
2D+ depth localization. The system comprises a 16-element
antenna array with 2 RF multiplexers (mux), each switches
through 8 antennas sequentially. The outputs of the two
switches are connected to a 2-channel receiver operating at
a 2MHz sampling rate, enabling the localization of existing,
unmodified consumer devices such as smartphones. Notably,
the RF switch timing is not synchronized with the RF receive
chain, reducing overall costs and system complexity. After
detecting, identifying the packet, and recovering the switch
timing within the signal processing stage, the 2D Angle of
Arrival (AoA) of the received packet is calculated with the
Phase Differences Matching (PDM) algorithm. Additionally,
depth information of the signal source is inferred using a
non-parallel wave depth estimator, which learns the phase
difference trends in the RF signals that deviate from the plane
wave. The system attains a median 2D AoA error of 2.53
horizontally and 1.88 degrees vertically, accompanied by an
average depth estimation error of 1.07 m.

This paper makes the following contributions:

• A system for 2D AoA localization with two switched
antenna arrays

• An phase difference matching algorithm for 2D AoA
calculation

• An non-parallel wave depth estimator to infer depth from
received phase
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Fig. 1. The overall pipeline of the proposed system. The two RF multiplexers (mux) switch simultaneously controlled by a Teensy 4.0, and data are collected
by a two-channel PlutoSDR, which are sent to a computer for processing. The signal processing pipeline includes packet detection and identification, switch
timing recovery, phase difference extraction and ideal phase differences generation. Finally, Phase Difference Matching and non-parallel wave depth estimator
are utilized to acquire 2D AoA and depth.

Fig. 2. Front View Fig. 3. Back View

Fig. 4. A picture of the L-shape antenna array. Each arm consists of 8 patch
antennas. The spacing between the antennas is 6.24 cm, as half the wavelength
of 2.402 GHz signals, and the center frequency of BLE advertising channel
37. On the back view of the antenna arrays, the positions of the switches are
marked as yellow, and PlutoSDR is marked as red.

II. SYSTEM OVERVIEW

This section outlines the system’s hardware and signal
processing flow, as shown in Fig 1. At the core of the
antenna array is a PlutoSDR, a 2-channel Radio Frequency
(RF) receiver operating at a 2MHz sampling rate. The de-
vice is budget-friendly as it operates on a single chip, and
priced at approximately 230 dollars, it is over 80% cheaper
compared to existing systems [13]. Each RF receive channel
of the PlutoSDR connects to an 8:1 RF multiplexer (mux)
that sequentially routes signals from eight antennas to the
receiver, resulting in a 16 element antenna array. A Teensy
4.0 microcontroller is used to control the two RF switches
simultaneously. This microcontroller operates independently
from the receiver, following a predefined pattern to reduce
extra hardware complexity and costs associated with syn-
chronization. Importantly, previous research by Su et al. has
demonstrated the potential to recover switch timing using a
similar low-cost radio hardware architecture [18]. The two 8-
element arrays from the two receiving channels are combined
into a single 16-element array, as depicted in Fig 4. Data
collected from the receiver is then transmitted to a computer
for signal processing via a USB cable.

The software processing pipeline consists of multiple stages,
as depicted in Fig 1. Initially, the system detects and identifies
valid packets from the incoming data stream. Subsequently,

it recovers the microcontroller’s switch timing by observing
discontinuities in the received waveform. Once a packet is
identified, an ideal version of the packet waveform is generated
in software and used as a virtual reference waveform to
determine phase differences between each antenna. The Phase
Difference Matching (PDM) algorithm is then used to calculate
the 2D Angle of Arrival (AoA) by comparing these phase
differences with the ideal phase differences corresponding to
each 2D angle. Finally, a depth estimation algorithm takes
into account the non-ideal characteristics of incoming radio
waves, which are not parallel, to estimate the depth of the
signal source. Subsequent sections provide a more detailed
explanation of each of these steps.

III. METHODS AND ALGORITHMS

This section dives into the three essential signal processing
blocks in Fig 1, including Packet Detection and Switch Timing
Recovery, Angle of Arrival (AoA) calculation with the Phase
Differences Matching Algorithm, and the Non-Parallel Wave
estimator for depth estimation and ultimately 3D receiver
localization.

A. Packet Detection, Identification, and Switching Timing Re-
covery

The BLE advertising packets transmitted from the target
device are embedded in the received data stream. Since the
antenna array is switching while receiving, the sudden change
from one antenna to another introduces discontinuities in
the waveform, causing bit errors when detecting and decod-
ing packets. Existing approaches [18] showed that iBeacon
type advertising packets can be detected and identified based
on their distinct properties. Specifically, iBeacon advertising
packets from different devices are different solely in their
Media Access Control (MAC) address, Universally Unique
Identifier (UUID), and Cyclic Redundancy Check (CRC).
Packet detection is accomplished through the computation of
correlation scores between the received phase derivative of a
received waveform segment, and the phase derivative of an
ideal iBeacon waveform, which is generated from Matlab’s
BLE Toolbox. When the correlation score surpasses a preset
threshold, which is established empirically at 0.5, the presence
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of an iBeacon packet is confirmed. Subsequently, the packet is
decoded, and the UUID is compared to a list of target UUID
to identify whether the packet comes from any of the target
devices.

After packets are detected and identified, received phases
are matched to their corresponding antennas. In contrast to
prior research, the receive chain operates asynchronously with
the RF switch, resulting in a lack of knowledge regarding
the assignment of data segments in the received signal to
specific antennas [14]. To resolve this limitation, the system
obtains switch timing by utilizing the discontinuity of the
waveform. In this system, the microcontroller controls the RF
switch in a pre-defined and continually repeating pattern, with
a switching frequency of around 33.3 kHz. The duration of
a BLE advertising packet is approximately 0.37 ms, which
would allow approximately 12.3 switch events within the
packet duration. Switching the receiving antenna from one
to another in the middle of receiving a packet creates jumps
and spikes in the received magnitude and phase derivative
waveform. The pre-defined switching pattern sets a unique
sampling duration on each antenna, so when it is matched to
the phase derivative segments in the received single-channel
waveform, antenna assignment could be recovered. The packet
detection, identification and antenna matching pipeline has
proven to be effective in previous work of Su et al [18].

B. Phase Difference Matching

This section presents the Phase Difference Matching (PDM)
algorithm, a custom method that enables 2D AoA calculation
by matching ideal phase differences with the received phase
differences. This algorithm exemplifies the cooperative use of
vertically and horizontally placed antenna arrays to simultane-
ously determine the vertical and horizontal angles of arrival.

The PDM Algorithm comprises the preprocess phase and
the runtime phase, where the preprocess phase consists of
multiple distinct steps. Initially, ideal phase offsets are con-
structed for all possible antenna pairs, based on two AoAs:
AoAhorizontal in the x-z plane and AoAvertical in the y-
z plane, both ranging from -90 degrees to 90 degrees, as
presented in Fig 5. This step accommodates all potential AoA
scenarios and are executed before AoA measurements, which
are in the runtime phase. Once AoAhorizontal and AoAvertical

are determined, the ideal phases of all 16 antennas are calcu-
lated, followed by the 16 phase differences between an arbi-
trarily determined null-antenna and every individual antenna.
This involves converting AoAhorizontal and AoAvertical into
spherical coordinates ϕ and θ using the following mappings:

θ = AoAhorizontal (1)

ϕ = cot−1 (sin θ tanAoAvertical) (2)

The positional relationship of θ, ϕ, AoAhorizontal and
AoAvertical are demonstrated in Fig 5.

Subsequently, the distance differences between each antenna
with the null antenna could be computed based on θ, ϕ
and their coordinates. Suppose the null-antenna located at

Fig. 5. Visual representation of the mapping from spherical angles to AoA
described in Equation (1) and Equation (2). In practice, separately solving for
the AoA on both antennas results in θ and the complementary angle of ϕ. To
transform spherical angles to angles on the X-Z and Y-Z planes (horizontal
and vertical AoA), previously mentioned equations are needed to construct
the mapping.

(x0, y0, z0), the phase difference between the null-antenna and
another antenna at position (xp, yp, zp) could be calculated by

d =
√

(x0 − xp)2 + (y0 − yp)2 + (z0 − zp)2 (3)

ˆ∆ψp = 2π(
d cos θ

λ cosϕ
− k)− π, p = 0, 1, 2, ...14, 15 (4)

Where d implies the distance between the two antennas,
ˆ∆ψp implies the estimated phase difference between antenna

p and the null antenna, and λ implies wavelength of BLE
signals. Notice that k implies aliasing effects, which happens
when d cos θ > λ cosϕ. To effectively remove aliasing, phase
differences are shifted into the range of −π to π. By iterating
within the range in one-degree spacing (−90◦ to 90◦) on both
directions, the computation results in 181 by 181 vectors of 16
elements, each vector representing the ideal phase differences
between an antenna and the null antenna. By this approach,
the ideal phase differences cover a comprehensive range of
spatial directions.

During runtime, the processing operations are executed
on a per-packet basis. Each antenna receives a segment of
a packet, and the phase differences of antenna pairs are
retrieved by comparing to an ideal waveform generated from
the MATLAB BLE Toolbox. After iterating through a total
of 16 antennas and getting each antenna’s phase difference
with the predetermined null-antenna that was initially selected
during the preprocessing phase, identical steps of alias removal
are performed. The runtime phase difference retrieval method
is proven to be valid in prior work [18].

Subsetquently, the vector of obtained phase differences is
compared with the 181 by 181 vectors of ideal phase differ-
ences. The objective is to pinpoint the 16-element ideal vector
that most closely matches the obtained phase differences
vector, defined by the lowest mean absolute error (MAE) of
their differences. Once this optimal vector is identified, the pair
of its associated coordinates are extracted, which represents
the estimated AoA (in degrees) in the horizontal and vertical
directions respectively.
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Fig. 6. A top-down view of the experiment setup. The designated area is
10.7 meters x 6 meters, with four vive base stations tracking a vive tracker
for ground truth. A person holding a phone and a Vive tracker moves randomly
within the purple area, and after the antenna position is changed, moves
randomly within the green area.

C. Non-parallel Wave Depth Estimator

Taking the system’s localization capabilities one step further
from the confines of 2D Angle of Arrival (AoA) measurement,
3D localization could be enabled with depth information. The
capability of 3D single-device RF localization with depth has
been proven by prior work [15]. This research introduces a
non-parallel wave depth estimator, an algorithm that achieves
depth estimation of target devices with only phase information.

In the context of 2D AoA estimation using phase difference
of arrival, a fundamental assumption is that waves propagate
as planar wavefronts. However, waves emitted from a single
source are not planar in real-world indoor applications, and by
analyzing the differences in the received signals compared to a
planar wavefront assumption, it is possible to coarsely estimate
the depth of the source. Analytical approaches assuming
spherical wavefronts are challenging using real-world signals
since the deviations are low in amplitude and can be corrupted
by environmental factors such as noise and RF multipath. To
overcome this challenge, correlation between non-parallelism
in waves and object depth is investigated through machine
learning on features extracted by associating each set of
received phase differences with their post-filtering AoA values.
The machine learning models of choice in this work are the K-
Nearest-Neighbor (KNN) Regressor and Random Forest (RF)
Regressor for their low complexity and scalability.

The choice of model is motivated by the necessity for a
regressor in this study to accommodate continuous data. To
prevent overfitting, deep learning models are precluded from
consideration. Regarding the two models of choice, KNN is
chosen for its ability to approximate the association between
variables and continuous outcome, and to infer new data
from these approximates as a non-parametric method. Random
Forest is chosen for its ensemble learning nature that suits
well in handling noisy data with subtle features, which is
characteristic of Radio Frequency data.

Upon each received vector of phase differences, identical

preprocessing steps detailed in the preceding section are
performed to generate ideal phase differences for the vertical
and horizontal post-filtering AoA, as demonstrated in Equation
(4). Subsequently, the inputs of machine learning pipelines
are the differences between the received and the post-filtering
estimated AoA’s phase difference vectors, where the output is
the estimated depth.

Considering the size of each dataset, KNN with K=500
and K=1000 are both examined, and the Random Forest
Regressor contains 200 trees. Utilizing these machine learning
models, depth estimation can be carried out using only phase
information. Detailed experimental results are presented in the
next section.

IV. EXPERIMENTS AND EVALUATIONS

Two experiments are designed to evaluate the performance
of the proposed method. The first experiment examines the 2D
Angle of Arrival (AoA) accuracy, and the second experiment
evaluates the depth estimation performance. The following
sections introduces the experiment setup and the evaluation
results. The evaluation used widely accepted matrices of mean
absolute error (MAE) and median error [15], [18].

A. Experiment Setup

The area for experiments is a 10.7 m by 6 m area inside
an indoor office space, denoted in Fig 6 and Fig 10. This
area contains chairs, desks, and monitors that causes rich
multipath, resembling real-world scenarios. Two experiments
are designed and conducted with the purpose of assessing the
system’s effectiveness on measurement of 2D Angle of Arrival
(AoA) and on depth estimation, respectively.

In both experimental scenarios, ground truth is retrieved
using a Vive localization system with Vive Tracker 3.0, which
was tracked by four base stations 2.0 positioned at the four
corners of the experiment area, as demonstrated in Fig 6.
Both experiments employed the same iPhone 7 as the target
localization device. This choice of equipment was motivated
by smartphones’ wide availability in the real world.

The antenna locations and participant movement range are
shown in Fig 6. During the experiment, a participant is invited
to hold the Vive tracker closely to the iPhone and randomly

Fig. 7. Cumulative Distribution Function (CDF) of 2D AoA results. For the
Phase Difference Matching algorithm, 90% of the AoA errors are less than
6 degrees on both vertical and horizontal AoA, an improvement on MRB,
which reaches 8 degrees and 12 degrees on 90%.

Authorized licensed use limited to: University of Michigan Library. Downloaded on July 17,2024 at 13:37:22 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Angle vs median error of horizontal AoA. From -30 to 30 degrees,
PDM achieves error of less than 5 degrees, and within the range of -70 degrees
to 70 degrees, PDM consistently outperforms MRB.

Fig. 9. Angle vs median error of vertical AoA. From -20 to 20 degrees,
PDM achieves error of less than 5 degrees. It maintained its higher accuracy
compared to MRB in the entire range of AoA, from -30 degrees to 30 degrees.

move in the designated area marked in Fig 6. In the first
experiment, the participant moves in the purple area where
the antenna array is put at the purple position, ranging 10 m
by 4 m and height limit of 3 m. In the second experiment, the
antenna array is put at the green location and the participant
moves in the green area, ranging 8 m by 5 m and height limit
of 3 m. For each random movement process, the participant
is asked to walk and shift both the held objects up and down
inside the designated test area for a continuous duration of
120 seconds, resulting in over 3000 to 3500 packets in one
movement process. The random movements are done 5 times
for the first experiment, and 5 times for the second experiment,
consisting 16,352 and 14,218 data points respectively. Fig 10
demonstrates the real experiment setup, where the antenna
array and Vive stations are explicitly marked out.

In subsequent passages, data from the first experiment is
denoted as Set 1, and data from the second experiment is
denoted as Set 2. The maximum range is 7.2 m and 7.9 m for
Set 1 and Set 2 respectively.

B. Performance of Two-Dimensional AoA

Set 1 data are used to evaluate the effectiveness and ac-
curacy of the Phase Difference Matching (PDM) algorithm.
Performance of both horizontal and vertical are plotted in blue
in Fig 8 and Fig 9, where the proposed system reaches median
error of 2.53 degrees in horizontal AoA and 1.88 degress
in vertical AoA. To provide comparison, results from Multi-
Resolution Beaming (MRB) proposed by Su et al. is plotted in

Fig. 10. The experiment environment as described in Fig 6. The Vive base
stations are marked in blue and the antenna array is marked in purple. The
office space has obstacles including desks, chairs, monitors etc. that creates
multipath.

red on each corresponding plots [18]. MRB is considered valid
as it also performs AoA measurements on BLE signals with
switched antenna array, and they utilized comparable hardware
as this work proposes in the sense of cost and complexity.
Results show that PDM has a lower error than MRB across the
entire scope of measurement, ranging from -70 degrees to 70
degrees horizontally and -30 degrees to 30 degrees vertically.

C. Performance of Depth Estimation

Data from both Set 1 and Set 2 are used to assess the
system’s effectiveness in performing depth estimation with the
non-parallel wave depth estimator. Prior to applying machine
learning on the collected data, both datasets go over a random
shuffle. On each dataset, a 10 fold validation is performed.
Cross dataset performance is also evaluated to test the system’s
robustness to environment changes. The proposed system
reached an mean absolute error (MAE) of 0.86 m across a
range of over 7 m on both within-dataset train-test splits and

Fig. 11. Cumulative Distribution Function (CDF) of depth error for non-
parallel wave depth estimator, where the mean values of each category is
marked out. For the same dataset 10 fold validations, 90% of the errors are
within 2.5 m. For cross dataset train-tests, 90% of the errors are within 3 m.
Maximum depth of both datasets are over 7 m.
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TABLE I
DEPTH ESTIMATION

Median Error of Depth Estimation
Random Forest KNN

Set 1 10-fold 1.04 m 0.86 m
Set 2 10-fold 1.27 m 1.14 m

Train/Test on Set 1/Set 2 1.20 m 1.21 m
Train/Test on Set 2/Set 1 1.10 m 0.86 m

cross-dataset train-test splits. Detailed results are shown in Fig
11, and median errors of all setup and model combinations are
listed in table I.

Fig 11 showcases the overall performance of the non-
parallel wave depth estimator. Results show that training and
testing on fixed antenna array locations or different antenna
array locations provide similar results, suggesting that the
machine learning approach is valid in capturing depth infor-
mation. The proposed system attains a median error of 0.86 m
on cross-dataset trained and tested data. The results introduce
a 23% improvement on the 1.06 m error proposed by prior
research on 2D L-shape RF antenna array in multipath-prone
environment [15].

V. CONCLUSION

In conclusion, this paper presents an affordable and practical
solution for achieving 2D+depth indoor localization using low-
cost, readily available components. The proposed system lever-
ages a 16-element L-shape phased antenna array with two RF
multiplexers, enabling 2D Angle of Arrival (AoA) localization
without the need for mux-receiver synchronization. Through
a custom Phase Difference Matching (PDM) algorithm and
a machine-learning based non-parallel wave depth estimator
to infer depth, the system achieves median AoA errors of
2.53 degrees horizontally and 1.88 degrees vertically, with an
average depth estimation error of 1.07 meters. The proposed
system demonstrates effectiveness in 2D+depth localization
with a single locator, which has the potential to enable
indoor localization applications with more accessible, low-
cost components, hence providing new opportunities for the
technology.
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