
TomoID: A Scalable Approach to Device Free
Indoor Localization via RFID Tomography

Yang-Hsi Su, Jingliang Ren, Zi Qian, David Fouhey, and Alanson Sample
University of Michigan, Ann Arbor, MI, USA

A B C
Fig. 1: TomoID is a real-time indoor localization system based on battery-free RFID that can locate multiple users in real-world environments.
Panel ‘A’ shows two users being simultaneously located in a conference room with the corresponding heatmap. Using the same machine
learning model, Panel ‘B’ shows a user being located in a digital fabrication laboratory without the need for additional training data. Panel
‘C’ shows TomoID implemented in a hallway, using the same pre-trained model with the tags and readers concealed behind the wall.

Abstract—Device-free localization methods allow users to ben-
efit from location-aware services without the need to carry a
transponder. However, conventional radio sensing approaches
using active wireless devices require wired power or continual
battery maintenance, limiting deployability. We present TomoID,
a real-time multi-user UHF RFID tomographic localization
system that uses low-level communication channel parameters
such as RSSI, RF Phase, and Read Rate, to create probability
heatmaps of users’ locations. The heatmaps are passed to our
custom-designed signal processing and machine learning pipeline
to robustly predict users’ locations. Results show that TomoID
is highly accurate, with an average mean error of 17.1 cm for a
stationary user and 18.9 cm when users are walking. With multi-
user tracking, results showing an average mean error of <72
cm for five individuals in constant motion. Importantly, TomoID
is specifically designed to work in real-world multipath-rich
indoor environments. Our signal processing and machine learning
pipeline allows a pre-trained localization model to be applied to
new environments of different shapes and sizes, while maintaining
good accuracy sufficient for indoor user localization and tracking.
Ultimately, TomoID enables a scalable, easily deployable, and
minimally intrusive method for locating uninstrumented users in
indoor environments.

Index Terms—Indoor Localization, Radio Tomography, RFID,
Multi-User, Real-Time

I. INTRODUCTION

Effective means of determining one’s indoor location can
empower users to explore their indoor environments, provide
them with pertinent and contextually aware information about
their surroundings, and enable their living spaces to respond
and adapt to their needs. Research efforts in this area have
focused on using localization methods to solve important
problems such as indoor navigation [1], [2], assisted living
[3], improving healthcare [4], and in-home activity detection
[5]. Both academic and industry researchers have investigated
a wide variety of underlying physical phenomena for local-
ization [6] as well as localization algorithms and deployment
strategies [7].

While these systems demonstrate impressive results, they
rely on the fundamental assumption that users are actively

participating, by continuously wearing a localization hardware
or carrying a smartphone. This assumption makes sense in
highly interactive and purposeful usage scenarios such as
navigating an unknown airport or shopping plaza. However,
there are a wide number of application scenarios where it may
be impractical to instrument all possible users. Users may not
be able to wear or carry a device, or users may not have
hardware or software that is compatible with the positioning
system installed in the environment. This raises the need for
device-free indoor localization systems that do not burden
users with the requirement of continuous instrumentation.

In this work, we propose TomoID, a real-time, RFID-based
tomography approach that uses radio waves to visualize the
interior of living spaces to determine the location of users,
as depicted in Figure 1. In this approach, battery-free RFID
sticker tags are placed around the perimeter of living spaces
along with RFID readers. While modeling radio propagation
in the real world, multi-path environments remains an open
challenge. Our signal processing pipeline utilizes low-level
RFID communication channel parameters such as RSSI, RF
Phase, and Read Rate to create tomograms (i.e. probabil-
ity heatmaps) which depict disturbances in the radio traffic.
This allows us to transform a relatively hard RF localization
problem into the computer vision domain, a mature field that
excels at extracting information from images. Our enhanced
tomograms are passed through a custom-designed pipeline that
consists of a modified U-Net convolutional neural network
which is designed for image segmentation tasks followed by
a Kalman filter for temporal smoothing. Results show that
our system has an average accuracy of 17.1 cm for stationary
users and 18.9 cm for mobile users at an update rate of one
frame per second. Furthermore, TomoID demonstrates multi-
user, device-free tracking of two individuals with an average
accuracy of 39.6 cm, and up to five people continually moving
with an average accuracy of 70 cm, which is sufficient for
most indoor localization applications given that the average
shoulder width of males and females is 46.5 cm and 39.5 cm.



In order to ensure that TomoID is a generalizable solution
that is not specific to a particular testing environment, we
demonstrate that our pre-trained model can be successfully
applied to new environments of different size and geometry,
with different reader configurations and number of RFID
tags, while retaining sufficient accuracy for indoor localization
tasks. Additionally, we show two applications of TomoID,
tracking usage of a fabrication laboratory and monitoring the
traffic of a hallway. Ultimately, TomoID enables a scalable and
easily deployable method for locating uninstrumented users in
real-world, multi-path rich environments.

This work makes the following contributions:
• The use of RF Phase and Read Rate channel parameters

(along with RSSI) to create tomograms
• Highly accurate real-time localization of individuals and

multiple people when stationary and moving
• A machine learning approach that allows pre-trained

models to be deployed to new real-world environments
with sufficient accuracy for indoor localization applica-
tions

II. RELATED WORK

Indoor positioning systems have drawn significant attention
in recent years as researchers have sought to create location-
aware services and applications. A wide range of physical
phenomena such as visible and infrared light [8], [9], ul-
trasound [10], as well as capacitive and magnetic beacons
[11], [12] have been investigated, with the use of propagating
Radio Frequency (RF) waves emerging as the predominate
method of choice [7], [13]. The following subsections review
related work in the area of Device-Free localization and draw
a distinction between active systems that generate and transmit
radio signals, and passive systems that backscatter (or reflect)
signals in order to transmit data.

A. Device-Free, Active RF Localization
Device-free, active RF localization systems have received a

notable amount of attention as they do not require the user
to be tagged in any way. Typically, these systems use the
same radio hardware designed for wireless communication,
but instead of focusing on transferring data, these systems
monitor metadata related to the state of the communication
channel (RSSI [14], [15], CSI [16], [17], etc.) for disturbances
caused by the presence of people. Other examples include
radio imaging systems that perform frequency sweeps to locate
users by finding the blobs in the reconstructed images, which is
computationally heavy and hard to implement in real time. Ex-
amples include millimeter-wave radar [18], [19], WiFi based
approaches [20], [21], as well as traditional radar approaches
[22], [23]. These systems can achieve good accuracy but
have several drawbacks, including the use of custom hardware
instead of commercially available hardware, the potential for
interfering the existing wireless network, and the need of a
custom-trained model for each space.

Active Radio Tomographic Imaging (RTI) systems place
evenly spaced radio nodes around the parameter of the

environment to be monitored. Each battery powered radio
transceiver sequentially transmits to the other receivers. By
monitoring the changes in RSSI caused by the presence of a
person, it is possible to create a top down heatmap showing
the location of the person [24], [25] with results showing
decameter to centimeter location accuracy.

While this method is conceptually similar to TomoID, active
RTI systems require a continuous power source for each node.
Thus, the high installation cost of adding wired power to
each node or the need to maintain the sensor node’s battery
level actively limits the use of this approach, lowering the
possibility of large-scale deployment. In contrast, TomoID has
the advantage of using UHF RFID tags which cost as little
as 15¢ per node [26], do not require batteries that need to
be replaced, and uses a different physical layer that provides
richer channel state information to boost performance.

B. Device-Free, Passive RFID Localization

Device-free localization of people and objects using passive
RFID has also received research attention as system designers
take advantage of the low-cost and battery-free nature of RFID
tags. One popular approach is to deploy a two-dimensional
grid of tags on walls [27], [28], floors [29], [30], poster board
[31], and on keypad-style input devices [32]. When a user
either touches a tag or enters its near-field region, the RFID
reader will report a change in RSSI and RF Phase allowing
the system to make a localization estimation based on which
tag was touched or interfered. For these systems, location
resolution is typically based on tag grid spacing, with room-
scale applications having a localization resolution of 30 cm
and a keypad application having a resolution of 3 cm.

Tomography-based approaches using passive RFID tags
have also been explored in literature [33]–[36], but often sim-
plify the testing environment or constrain the usage scenario to
make the problem tractable. Notable examples include Wagner
et al. [33] which uses specialized bi-static RFID readers that
can transmit and receive on multiple readers antenna simulta-
neously to compute a full tomographic matrix, resulting in 45
cm accuracy. Ma et al. [37] use commercially available RFID
readers and have demonstrated 24 cm localization accuracy,
but required a multi-path free environment and used stationary
aluminum foil targets as a stand-in for people. TomoID makes
significant advances in the use of RFID tomography for people
tracking, by creating a real-time system that can track multiple
users freely walking around an unconstrained and multi-path
rich environment. We further differentiate our work by creating
a computer vision-based machine learning framework that,
once trained, can be applied to new indoor environments with
significantly different geometries, such as non-square-shaped
rooms and hallways. The system’s flexibility significantly
decreases deployment burden while transferring the system
to new environments whereas maintaining high localization
accuracy.



Fig. 2: An overview of the signal processing flow to transform RFID data into human location. Panel ‘A’ shows a tagless user in the office
environment with RFID tags and antennas on the wall. Panel ‘B’ shows the invisible RFID signals in the air being blocked by the user. In
panel ‘C’, 3 heatmaps are created using tomographic imaging methods generated from RSSI, RF Phase, and Read Rate channel parameters.
Panel ‘D’ shows the denoised and segmented probability map created by a CNN from the 3 heatmaps in panel ‘C’. Panel ‘E’ shows the
calculated current position of the user and the trajectory smoothed by a Kalman filter.

III. SYSTEM OVERVIEW

This section provides a holistic overview of TomoID’s
components and their operation. Subsequent sections dive
deeper into each of these components and provide greater
details on methodology and implementation. At the highest
level, TomoID uses an array of passive RFID tags along the
perimeter of a living space to create a tomogram, also called
a heatmap, of the interior of the room. Our signal processing
and machine learning pipeline uses these heatmaps to make
real-time predictions of users’ locations.

Unlike previous works, TomoID has been designed from the
ground up to work in real-world living and office spaces as
shown in Figure 2 panel ‘A’. RFID tags in the form of stickers
are placed directly on the wall along the perimeter of the room
using a basic cardboard template. In the long-term, tags can
be manufactured into (or on the backside of) the drywall for
easy deployment or in the form of wallpaper. A single Impinj
Speedway R420 UHF RFID reader is used with one of the four
antennas placed on each wall facing inward, and can be placed
on, within, or even behind the wall. To further increase the
deployability, equivalent UHF RFID readers with integrated
RFID antennas and Wi-Fi capability such as ThingMagic A6-
IN-WIFI or Alien ALR-9650 can be used to reduce cabling
overhead as they only require wall power or Power over
Ethernet (PoE). The RFID reader interrogates the tags in a
probabilistic fashion as defined by the EPC Class 1 Gen 2
(ISO-18000-6C) protocol and reports back low-level channel
parameters such as RSSI, RF Phase, and Read Rate of each
tag. For simplicity, these read transactions can be thought of
as a point-to-point connection between the tag and the reader,
as shown in Figure 2 panel ‘B’. When a person enters the
room, they block or disrupt some of the RF paths. Using a
tomographic approach, we can create tomograms showing a
virtual“hole” in the signal path as shown in figure 2 panel
‘C’, which visually depicts the RSSI, Phase, and Read Rate
tomograms.

The challenge when using RF radio systems in real-world
conditions is obstacles, especially metal objects and surfaces
with complex geometries. These obstacles introduce nonideal-
ities in signal propagation such as multi-path, scattering, and
near-field effects. As a result, the tomograms often visually
appear to be corrupted or incomplete, and it is not possible
to use linear or rule-based methods to determine the person’s
location with high accuracy. Furthermore, given the proba-
bilistic nature of the RFID protocol used by the commercially

available off-the-shelf readers, coupled with the variations in
per tag’s channel condition, the tomograms will be missing
data and leads to limiting the maps’ update rate. To overcome
these issues, a custom-designed convolutional neural network
(CNN) based on U-Net [38] was optimized for model size
and computation speed. Results of the trained network are
shown as a probability map in Figure 2 panel ‘D’. Finally,
the users’ (X, Y) positions are extracted from the probability
map, and a Kalman filter is added at the end to smooth the
trajectory as shown in Figure 2 panel ‘E’. The pre-trained
model runs in real-time at a frame rate of 1Hz. Since the
tomograph approach transforms the RF localization problem
to a CV image processing problem, TomoID is able to apply
the pre-trained model to other spaces and have good accuracy
without collecting any new training data to update the model.
Results will be described in Section VII and VIII, showing
a real-time localization accuracy of 17.1 cm for a stationary
user, 18.9 cm for a freely moving user, and near 70 cm for 3
to 5 users in motion. A demo video can be found here 1.

IV. INSTRUMENTATION AND DATA ACQUISITION

This section outlines the initial deployment of readers and
tags, which are placed uniformly around the perimeter of office
space along with the data acquisition methodology. Section
VII investigates which instrumentation and data acquisition
parameters have the most significant impact on localization
accuracy, and Section VIII analyzes which instrumentation
parameters can be modified to improve system deployability.

To instrument the space, a line of RFID tags is placed
approximately 1.4 m above the floor around the room’s
perimeter, with a tag-to-tag spacing of 16.37 cm. This spacing
is equal to the half-wavelength of the center frequency (915
MHz) of the UHF RFID band used in North and South
America and has been selected to avoid coupling between
adjacent tags. A simple cardboard template with spacing marks
on it can speed up the installation process. Each reader antenna
is mounted on the center of each wall below the line of tags.
The position of each tag can be calculated once the location
of the first tag is measured. The system takes the positions
of the tags and the antennas to formulate the RF links shown
in 2 panel ‘B’. Finally, the four antennas are connected to
the reader, which sends data to the host PC via Ethernet. The
whole instrumentation process can be done within 15 minutes

1https://www.youtube.com/watch?v=XfPdPlWIY I



or less, depending on the room’s size, by a person familiar
with the system. Figure 1 A shows the conference room used
for our initial testing and represents a typical usage scenario.
For instance, the RFID tags are placed directly on the drywall
mounted on steel studs, typical for commercial buildings in the
United States. The suspended ceiling consists of metal tracks
and gypsum ceiling tiles, and the floor is made of concrete
strengthened with steel rebar. The conference room is filled
with office desks, a large conference table, and chairs.

The reader operates in the 902 ⇠ 928MHz frequency band
and pseudo-randomly frequency hops between 50 channels as
required by the Federal Communications Commission (FCC).
The output power of the RFID reader is 30dBm, and it is set to
hybrid mode with ’dual-target select’ (B ! A) search mode.
This setting allows the reader to perform a deeper, cleaner scan
of the whole tag population with the trade-off of decreasing
absolute read rate of an individual tag.

Each tag exhibits different RF characteristics based on
manufacturing variations and its surrounding environment.
For instance, some tags may be placed near metal cabinets,
electrical conduits, computer monitors, etc., while others will
inevitably be placed near or directly in front of the steel
support studs inside the wall, which are spaced 16 to 24 inches
apart. All of which will cause an unknown amount of degra-
dation in individual tag performance. To overcome variations
in per-tag read performance, TomoID performs once daily
background subtraction and adjusts the calculation matrix’s
dimension dynamically, as described in the next section.

V. GENERATION OF RFID TOMOGRAMS

Radio Tomographic Imaging (RTI) methods transform a
time series of RF measurements from multiple RF links
into camera-like images called tomograms, which spatially
convey information about interference in the communication
channel between the reader and tags. RTI methods offer two
advantages. First, they provide a formulation for inferring the
obstacles in space, in this case humans in a living space.
Second, they convert an RF signal interpretation problem into
a computer vision problem, enabling the application of well-
developed techniques for segmenting and localizing objects
in images. Moreover, the tomogram itself converts informa-
tion about link geometry (i.e., via the pixel-correspondence
between locations in space in the tomograms and links) in a
convenient format for subsequent learning systems.

A. Low-level UHF RFID signal characteristics of RF link
An RF link is formed when an RF signal is transmitted from

the reader antenna, backscattered off an RFID tag, and then
received by the same reader antenna. The RF measurements at
the receiving end contain information of the physical space.
While there will be minor variations over time, if a person
blocks the direct line-of-sight of the RF link, there will be
substantial variations: the received RSSI will be lower, the RF
Phase will have a jump, and the Read Rate will drop.

As an illustrative example, Figure 3 shows a user walking
perpendicularly through the LOS path of a single RF link

Fig. 3: Low-level RFID signals of an RF link (highlighted in green)
over time as a user passes by with the dots showing averages over
a one-second window. RSSI (purple) and Read Rate (orange) suffers
a substantial drop at t = 8 seconds, while RF Phase has no obvious
jump. The changes in RF Phase can be revealed by sorting the data
with the carrier frequency used. The gray dots show the RF Phase
when the room is empty without any users.

(highlighted in green). The purple and orange plots show
RSSI and Read Rates respectively as a function of time, with
dots showing averages over a one-second window. When the
user walks into the LOS path at t = 8 seconds, there is
a substantial dip in both RSSI and Read Rate. Due to the
regulatory requirement that RFID readers pseudo randomly
change their carrier frequency, the RF Phase (plotted in blue)
appears to oscillate randomly. While a small change can be
seen when the user walks into the path at t = 8, re-plotting the
RF Phase data as a function of the carrier frequency (which is
also reported by the RFID reader) reveals clear patterns when a
person enters and leaves the LOS path. Using the background
RF Phase measured (plotted in gray) when the room is empty
with no users as a reference, an offset occurs at t = 8 (red).
While the RF Phase before (pink) and after (yellow) t = 8
align with the reference. These variations in communication
channel parameters caused by the presence of an individual or
multiple people form the bases of the tomograms, which will
be described next.

B. Mapping changes in an RF link onto pixels in tomograms

Our goal is to use the received RFID tag read data to
infer the location of users and objects in the space. This
formulation instantiates that there is a set of L RF links,
and the space is discretized into a set of N grid cells.
The changes in the physical space that happen in each cell
contribute to the observed measurement results. Therefore,
given the observation y 2 RL (from the three RFID channel



Fig. 4: A snapshot with one user in the space. Panel ‘A’ is the heatmap generated from RSSI, panel ‘B’ from RF Phase, and panel ‘C’ from
Read Rate. Panel ‘D’ is the output of TomoID with the trace of the user in blue dots.

parameters, yRSSI , yRFPhase, and yReadRate), we assume
that it is generated by a linear function of information at each
of the N grid cells; this information is represented by an
x 2 RN , which is the vector form of a tomogram. Since
we have the information about the RF link geometry, namely
the approximate position of the antennas and the tags, we
can construct a model mapping cell information to the RF
link’s observations. The model is assumed to be linear, it takes
the form y = Wx where W 2 RL⇥N encodes link-cell
information. From the low-level RFID signal characteristics
discussed in the previous section, we have learned that the
physical changes happening on the LOS path cause significant
variations in the received RFID read data. We then define that
cells in the direct LOS of the ith RF link contribute with
weight wi and zero otherwise, resulting in a W of the form

Wij =

(
wi, if link i passes through cell j
0, otherwise.

(1)

The weight W controls the relationship between the RF
measurements y and the tomogram x. We define the weight wi

for an RF link i as the reciprocal of square root di, the distance
from the antenna to the RFID tag for RSSI, RF Phase and Read
Rate. When the RFID tag is far away from the antenna, the RF
signal is weaker and is more likely to be degraded by noise
or obstructions outside the LOS path. Therefore, the weight is
designed to be smaller for longer RF links. Different weight
models might construct tomograms that are visually brighter or
darker. Despite the appearance of the tomograms, our custom
neural net extracts information and generate a clean, less noisy
tomogram as output which will be described in section VI.

With a set of observations y and weight W, one could
solve for the tomogram x that best explains the recorded
observations in a least-square sense, or argmin

x
||y�Wx||22.

The least-squares problem, however, is ill-posed and one has
to impose a smoothing operation to the output. This objective
results in the Tikhonov-regularized least-squares problem,

x⇤ = argmin
x

||y �Wx||22 + ↵(||Dxx||22 + ||Dyx||22), (2)

where Dx and Dy are N⇥N horizontal and vertical difference
operators in 2D, and ↵ trades off between smoothness and re-
construction fidelity. Eqn. 2 can be minimized by directly solv-
ing the normal equations (WTW+↵(DT

x
Dx+DT

y
Dy))x =

WTy. Due to the randomness in the RFID communication
protocol, unfortunately the number of responding links (and
thus L) is different per-time step. TomoID varys the rows of
W to match the number of received RF links in the time
window, enabling the RTI method to generate fixed-size x

with varying sizes of y at each time frame. To the best of our
knowledge, this precludes the pre-computation of an inverse
matrix for Eqn. 2. However, we find that solutions can be
obtained sufficiently quickly in practice.

One remaining practical challenge is that one link may be
weaker than another for reasons unrelated to a person walking
through the link LOS path (e.g., due to nearby metal studs). To
handle this, following [39], our observations y represent the
difference between a run-time observation y0 and calibration
observation ȳ (or y = y0 � ȳ). Since the system is linear,
the x⇤ obtained from solving Eqn. 2 is the difference between
run-time cell information x0 and calibration observation x̄.
Thus, one can create a calibration set of observation data ȳ
when the system x̄ is in a known state (e.g., nobody present).
Experimental results show that calibration data only needs to
be obtained once every one or two days as variations in tag
performance changes slowly if at all. This data can easily be
collected automatically by the system when users are likely
to be asleep in the early mornings, and no movement in
the room is detected. We obtain ȳ by taking the average
of 5 minutes of data with no user in the space. Given
this calibration information, the resulting reconstructions then
show the difference from the calibrated state.

It should be noted that this construction of the tomograms
helps resolve the variability of tag read rate and the probabilis-
tic nature of the EPC Class 1 Gen 2 (ISO-18000-6C) protocol,
which is particularly important for the neural network learning
model discussed in the next section. The key insight is that
tomograms x are a uniform data representation that can be
generated from sparse input data y. For example, there is no
guarantee that all the RFID tags will be read by the reader
within a time window. Thus for a given time window the RSSI,
RF Phase, and Read Rate data from the tags that are read will
be used to update the weights of the pixels on the tomograms
along their respective RF links, which is achieved by forming
the weight matrix W with only the RF links read. Missing tags
will contribute no information to their respective RF links but
importantly will not harm the construction of the tomograms.
This provides system designers with flexibility in the duration
of the acquisition time and the resulting system update rate.
Details on the trade-off of window size and the use of history
are described and explored in section VII.

Given three y consisting of RSSI, RF Phase, and Read
Rate, we produce three tomograms, shown in Figure 4. The
tomograms have different blob sizes and shapes since the
RF characteristics (including noise) of RSSI, RF Phase, and
Read Rate are different. Sometimes the blob is not apparent
in the RSSI tomogram but can be seen in the RF Phase or the



Read Rate tomogram. Thus the tomograms enrich each other
compared to a traditional RSSI-based tomogram, which we
demonstrate empirically. At the same time, given the different
tomograms, it would be difficult to directly create an algorithm
to extract the information. We thus turn to convolutional neural
networks.

VI. CONVOLUTIONAL NEURAL NETWORK PROBABILITY
MAP RECONSTRUCTION AND LOCALIZATION

After creating tomograms (converting the RF-based chal-
lenge into an image processing problem), we proceed to locate
users in the tomograms. Having the tomograms lets us apply
the mature field of keypoint localization [40], [41] to the prob-
lem of localizing people in RF data. Our architecture is built
on the standard U-Net [38] architecture, which is common in
image-to-image translation problems [38], [42]. Additionally,
it is of particular interest to our case because U-Net is agnostic
to the size of the input, which enables deployment in varying
size rooms without retraining. Following keypoint detection
approaches [40], [41], we train this U-Net to regress a small
blob around the person’s location with a mean squared error.
At training time, the location can be generated by a ground-
truthing system; at test time, localization entails running the
tomograms through the network and finding peaks.

A U-Net consists of an encoder that reduces spatial resolu-
tion while increasing the feature dimensions, and the encoder
is followed by a decoder that increases spatial resolution
while decreasing feature dimension. Throughout the network,
there are skip connections that propagate high-resolution in-
formation from the encoder for use by the decoder. Our
architecture takes input tomograms (typically with 3 channels,
RSSI, RF Phase, and Read Rate in our case), converts them
into features with two convolution layers with 64 channels,
and then passes them through the encoder and decoder. These,
and all convolution layers are size 3⇥ 3 and are followed by
a ReLU [43]. The encoder consists of a set of Downsampling
blocks. Each contains two convolution layers, the first of which
increases feature dimension by 2⇥, followed by 2 ⇥ 2 max-
pooling. The decoder mirrors this with Upsampling blocks
that 2⇥ bilinearly upsampling their input, concatenating the
corresponding pre-max-pool high-resolution encoder feature
map, and then performing two convolution layers. This is
finished with a single 1⇥ 1 convolution that maps to a single
output channel. In total, the network can be seen as a function
f that maps a tomogram of a given height and width to a
one-channel output of the same height and width, which is
parameterized by a set of weights and biases ✓.

Given a set of ground-truth tomograms and corresponding
locations, we can train our network to produce a heatmap
indicating the location of the person. At training time, we
need a set of N tomograms {Ti}Ni=1 (with Ti 2 RH⇥W⇥3)
and locations {(xi, yi)} of a person. We then construct a
heatmap Gi 2 RH⇥W⇥1 by placing a Gaussian function
centered at (xi, yi) with standard deviation 30cm. Supposing

that our network is f with parameters ✓, the goal is to solve
the problem

argmin
✓

NX

i=1

H,WX

j=1,k=1

(f(Ti)j,k � (Gi)j,k)
2, (3)

or to find the parameters that minimize the total per-pixel error
in predicting the heatmaps. We train the deep network using
the AdamW [44] optimizer (with learning rate = 10�3 and
✏ = 10�8).

Inference consists of running a new tomogram through the
model, labeling the blobs with the ndimage.label function
in scipy python package, and finding the blobs with peak
value above the threshold. This, in conjunction with the
skip-connections in the U-Net, enables TomoID to output a
variable number of users rather than a fixed number of outputs
(which we demonstrate empirically). The particular location is
extracted from the blob by weighted average and a Kalman
filter is applied to smooth outputs over time. The end result
appears in Figure 4, panel ‘D’.

We currently obtain this using an ultra-wideband tracking
system that acquires uninterrupted, continuous localization
data as ground-truth to train and evaluate TomoID. With 9
Ciholas DWUSB ultra-wideband anchors on the ceiling, we
can track an ultra-wideband node on a custom-made hat worn
by a participant at a rate of 100Hz with ±1 cm accuracy
in our configuration. This high-precision, high-refresh-rate
tracking setup provides TomoID with continuous and precise
measurements that let TomoID see observations as the user
moves around rather than standing still.

VII. EVALUATION

Different applications have widely varying localization re-
quirements. For example, smart buildings that optimize en-
ergy consumption based on human occupancy require coarse
accuracy and may only need to check if a person is in
a room to decide when to control lighting or the heating
and cooling system. On the other hand, in-home activity
detection for elder care requires a higher update rate and higher
accuracy to support applications such as activity inferencing
and monitoring. A practical resolution for these applications
should at least be lower than the average size of the human
shoulder breadth, 47 cm for male and 40 cm for female in the
U.S. [45], [46].

Scalably deploying learned device-free systems presents
other challenges. In a single room, concerns include how much
training data is required and whether the systems generalize
to a variety of bodies. Extending device-free localization
to multiple rooms raises questions of how much training
is required to generalize different spaces. Finally, there are
practical concerns about how cost-effective and easy-to-install
the system is, which affects the deployability as well.

Our experiments aim to test both accuracy and deployment
complexity. We analyze the relationship between system pa-
rameters, localization accuracy, and computation complexity
in terms of parameter size of the NN model. We then analyze



Fig. 5: (a)-(c) from left to right. (a) Performance of TomoID with different amounts of training data. Results show that performance saturates
with just 5 minutes of training data. (b) Performance of TomoID with different RFID tag spacing of 0.5� = 16.4 cm, � = 32.8 cm, 1.5� =
49.2 cm and 2� = 65.6 cm. (c) Performance of TomoID with different inference period FPS and number of past information wl.

the real-time performance of TomoID with both single and
multiple users. Finally, we test whether the model trained
on the original conference room described above can be
transferred to other spaces (such as a large digital fabrication
lab and a long narrow hallway), thereby eliminating the need
to gather ground truth and training data for new deployments.

A. Data collection
A total of 130 UHF RFID tags with 16.37 cm spacing are

placed on four walls in an office room of 31.2 square meters
(336 sq. ft.) shown in Figure 1 panel ‘A’. We collected 90
minutes of data for a single person spread over three separate
days (50 minutes, 25 minutes, and 15 minutes respectively),
each with an additional 5 minutes of calibration data recorded.
The 50 minutes of data from the first day is used as training
data, while the 40 minutes from the other two days are used
as test data. A 174 cm tall male participant moves and stops
randomly out of his own will during the session. As for the
ground truth, the Ultra-Wideband (UWB) localization system
previously described was installed in the same office room.
The participant wears a custom hat with a battery-powered
UWB tag throughout the whole session. A total of nine UWB
anchors are placed on the ceiling and connected to a host
computer, locating the UWB tag on the user at a rate of 100
Hz. A second dataset lasting 30 minutes with two users (a 174
cm tall male and a 170 cm tall female) was collected using the
same method, with both users wearing the UWB hats, moving
throughout the space within the session. Three more datasets
with 3, 4, and 5 users each under the same experimental setup
across a 10 minutes session are collected. The participants are
males in the range of 165 to 180 cm tall.

B. TomoID system parameter analysis
This section explores the relationship between accuracy and

system parameters such as the amount of training data (ts),
the number of U-Net blocks, spacing between RFID tags (d),
update frames per second (FPS), and window length (wl) in
TomoID through a series of experiments.

Collecting training data (for now) depends on using an
alternate sensor like a UWB sensor, and practical deployment
depends on this training step being not overly burdensome.
Figure 5a shows the resulting accuracy while varying the
amount of training data used to train the model. The average
error saturates at ⇠20 cm with only 5 minutes of training data,
showing the ability of the model to converge with a small
amount of data provided.

U-Net has an encoder-decoder structure that shrinks and
expands the data in a set of steps, or blocks. Increasing the

number of blocks increases the network’s learning capacity
(and parameter count), as well as run-time. Table I shows the
number of parameters and the localization accuracy for U-
Nets with different numbers of blocks. The results suggest
that all networks have similar accuracy. Therefore, we choose
the 1-block U-Net as our final setting since it has 35x fewer
parameters than the 4-block U-Net.

TABLE I: TomoID’s performance and neural network parameter
count with different number of U-Net blocks under parameters setting
of ts = 5, FPS = 1, wl = 1, with Kalman filter.

UNet Blocks 4 3 2 1

Parameter Size 17.27M 9.34M 2.25M 0.48M
Average Error (cm) 21.3 21.8 22.0 20.8

Increasing the spacing between tags means lower tag pop-
ulation, so the reader can complete an inventory scan cycle
faster, and the system can be deployed at a lower cost.
Figure 5b shows the accuracies under various tag spacing by
removing the recorded tags in post-processing. As would be
expected, with larger tag-to-tag spacing, accuracy decreases
monotonically. Interestingly, the measured error is very close
to the distance between tag spacing, suggesting that moving to
smaller tag-to-tag spacing would increase system performance.
However, near-field cross-coupling is expected between tags at
distances under 0.5�, which will degrade system performance.

Refresh rate is a critical element that decides the system’s
responsiveness in real-time applications. When varying FPS,
two crucial parameters are involved: computation time and tag
reads per frame. First, the computation bottleneck of TomoID
is solving Equation 2. Pre-computing the matrix is impossible
since each cycle has different responding RF links, so W is
different each cycle. Second, higher reads per frame mean
more RF links are measured, forming a more intact RF grid.
The average read rate for our setup is 642 reads/sec for the
whole office space. Assuming under the best case scenario, all
tags have the same RF condition, and there is no collision, we
can loop through all 310 RF links forming the whole RF grid
in the room every 0.5 seconds. Therefore, with FPS = 5 and
FPS = 10, the average reads in the time window are 130
and 64 reads, meaning at most 40% and 20% of the RF links
are scanned even under the ideal condition, forming a very
loose RF grid. However, we observed 62.9% of RF links read
per second on average in the office space environment under
real-world conditions. Given the tomograms formed by partial
information of the RF grid, our custom 1-block U-Net can
still extract the user’s position successfully. The corresponding
accuracies are shown in Figure 5c.
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Fig. 6: TomoID with four antenna placement configurations. The plot
shows the RF link distribution under specific configuration with the
antennas highlighted in red. The average errors are calculated using
the model trained with the antennas at the center. The number of RF
links within the setup from left to right are 310, 310, 260, and 310.
The average errors from left to right are 18.9 cm, 19.6 cm, 24.3 cm,
and 19.5 cm.

While higher FPS results in lower accuracy, it is possible
to improve the performance by adding RSSI, RF Phase, and
Read Rate tomograms from the past time slices as input to the
neural network. Figure 5c shows that by having a total of 9
tomograms across 3 consecutive time slices (wl = 3) as input
at FPS = 10, TomoID can lower the average error by half to
27.1 cm compared to FPS = 10 with only the current time
slice as input (wl = 1).

C. Performance
After the analysis above, we finalized the parameters to a

1-block U-Net, ts = 5, d = 0.5�, FPS = 1, and wl = 3 to
perform real-time localization. The results in this section were
measured within the same office space where the 5 minutes
of training data with only one person was collected.

Single-user performance: TomoID achieves 17.1 cm
average error with a single user standing still at 25 uniformly
distributed points in the office space for 1 minute each.
Although this method is widely used, it is not practical since
the user’s motion is eliminated, forming more stable RF
measurements. A testing situation that closely approximates
real life with the user moving randomly around the space was
measured with the device-based UWB localization system’s
help as ground truth. The average error is 18.9 cm, indicating
the ability of TomoID to capture the user’s position with non-
static RF measurements accurately.

Multi-user performance: Device-free localization systems
have difficulty locating multiple users because of the shad-
owing effect created when more than one user is aligned on
the same RF link from the antenna to the tag. Prior works
[39], [47] tried to tackle this problem but were tested in well-
controlled environments which do not represent real-world
scenarios. Even being trained with only 1 user in the training
data, our custom U-Net is still able to output multiple blobs
because the unique NN structure extracts features from small
local areas other than viewing the input as a whole. TomoID
achieves an average error of 39.6 cm when locating two users,
with 90% of the error within 70 cm. As the number of users
increases, the system might only locate some users in a frame.
With the help of the Kalman filter, TomoID can interpolate the
locations with past information to achieve 72.2cm, 72.1 cm,
and 70.1 cm average error with 3, 4, and 5 users respectively.

Hardware placement flexibility: Sometimes it is not
ideal to place the antenna in the center of the wall because
of blocking furniture. TomoID can still operate when the

positions of the antennas are changed since it learns the
heatmaps instead of the physical layout of the space. We
moved the antennas to different locations without changing
the position of the tags. Figure 6 shows the RF links under
different antenna placements with the model trained with the
antennas at the center. The average error stays at near 20
cm, proving the robustness of the neural network and the
deployment flexibility of TomoID.

VIII. TOMOID IN NEW ENVIRONMENTS AND ITS
APPLICATIONS

Neural networks excel at learning and extracting useful
information from the RF parameters. However, the complex
non-linear multipath relationship of RF parameters is highly
dependent on the physical space. Therefore, one of the hard-
est challenges for ML-based, device-free indoor localization
systems is maintaining high accuracy when applying a pre-
trained model to a new area. TomoID overcomes this issue by
featurizing RF measurements into tomograms to eliminate the
neural network from learning room-specific information such
as multipath from raw RF measurements. Moreover, the unique
neural network structure can process input tomograms with
flexible sizes, allowing the opportunity to apply a well-trained
model to new spaces without retraining. This is important
because the task of collecting high-fidelity ground truth data
is one of the greatest barriers to using localization systems.

When deploying TomoID to new spaces, we install reader
antennas and use a cardboard template to space out the
tags onto the walls evenly. TomoID only needs the weight
matrix W described in section V-B, 5 minutes of background
calibration data, and the pre-trained model to start inferencing
users’ locations.

We deploy TomoID in a digital fabrication laboratory and
a hallway. Given that the two new spaces have fundamentally
different sizes, geometries, reader locations and orientations,
along with different RF multipath environments, we wanted to
investigate the quality of the pre-trained model compared to
a custom train model for that space. This way any change
in performance could be compared to the ideal case of a
custom-trained model. The result shows that the pre-trained
model works effectively for the target applications described
in the paper. Finally, we explore and evaluate several possible
applications of TomoID in the digital fabrication laboratory
and a hallway.

A. TomoID in Digital Fabrication laboratory
Figure 1 panel ‘B’ shows the digital fabrication laboratory,

which is 60% larger than the office space used in the previous
sections. There are workbenches, a laser cutter, a metal-backed
whiteboard, a 3D printer, and tall metal cabinets that block
and reflect the RF signals in the room. The digital fabrication
laboratory’s shape is also different from the office space used
to create the pre-trained machine learning model. The blacked-
out area in the top-down floor plan shown in Figure 7a
indicates a walled-off section of the space. A total of 139
RFID tags, creating 318 RF links, are in the space with four



Fig. 7: (a)-(e) from left to right. (a) RF Link distribution of the fabrication laboratory with a cut out in black and RFID antennas in red. (b)
Four sections of the fabrication laboratory. (c) The fabrication laboratory usage of a single user across 5 minutes. The user first worked at
the workbench, issued a 3D printing job, and then did laser cutting, went back to the workbench, finally retrieved the printed 3D model and
headed out of the space. (d) The RF link distribution plot of hallway scenario. Since RFID tags are only placed on two sides of the hallway,
there are no horizontal RF links compared to the office space or fabrication laboratory. (e) Hallway traffic showing a person crossing the
hallway back and forth across 5 minutes.

RFID reader antennas mounted on the walls denoted as red
squares. To quantify the performance in this new space, we
deployed the UWB localization system to obtain ground truth.

Within the 25 minutes test session with 5 minutes of data
to train, the average error is 28.3 cm for the custom-trained
model and 38.3 cm for the pre-trained model. The pre-trained
model is only 10 cm less accurate than the custom-trained
model, which is an impressive result given that the room is
larger, has a different shape, and has significantly different
RF characteristics than the room the model was trained on.
Furthermore, lower accuracy does not necessarily mean poor
system performance. A 38.3 cm average error is comparable
to the average human shoulder breadth of 47 cm and 40 cm for
males and females in the U.S. [45], [46], which is considered
sufficient for many location-based applications.

As proof of viability, we show that the pre-trained model
has sufficient accuracy in tracking space usage. In this test, the
space was divided into 4 stations: 3D printing, a laser cutting
area, a hand tool workbench, and an open shop floor, as shown
in Figure 7b. A time-series usage plot, shown in figure 7c,
visualizes the user’s activity within the time frame. Results
show that TomoID could successfully track an individual’s
space usage across time, which can be used to enhance shop
maintenance and scheduled cleaning routines.

B. TomoID in Hallway - Seeing Through Walls

As a second example of using a pre-trained model on a
new space, TomoID is deployed to monitor the number and
direction of people walking down the hallway shown in Figure
1 panel ‘C’. A total of 46 RFID tags and 4 antennas were
placed inside the rooms on the two sides of the hallway,
resulting in an instrumented area of 4m x 2.25m filled with
92 RF links. The RFID reader antennas are arranged in a new
ordination with two antennas on each side of the hallway—the
open-ended hallway results in missing horizontal RF links as
shown in Figure 7d. Therefore, it is harder to detect vertical
movements and localize users at the ends of the hallway.
Nonetheless, the pre-trained model from the office space
performs well, resulting in a localization error of 39.2 cm. The
custom-trained model trained with 5 minutes of data recorded
in the hallway has a localization error of 28.6 cm, which is
only a 10 cm improvement compared to the pre-trained model.
While the performance of the pre-trained model is indeed

lower than the custom-trained model, it has sufficient accuracy
for many indoor localization applications. Thus the pre-trained
model has the significant advantage that a user does not have
to collect ground truth training data, significantly improving
the deployability of TomoID compared to previous work.

An example of monitoring foot traffic flow through the
hallway is shown in Figure 7e while two participants were
asked to walk up and down the hallway for 5 minutes. Results
show that TomoID can indeed track the direction of users
without the need for collecting a site-specific training set.
Importantly, the fabrication lab and hallway experiments show
the power of combining tomography and flexible machine
learning models for device free RF base localization, as it
allows the RF physical layer to be separated from the machine
learning layer enabling pre-trained models to be used, thus
lowering the burden for deploying the localization system.

IX. CONCLUSION

This paper proposes TomoID, a device-free real-time local-
ization system that uses battery-free RFID technology to image
the interior of living spaces to predict a user’s location. This
radio tomography approach employs a novel signal processing
pipeline that uses communication channel parameters such as
RSSI, RF Phase, and Read Rate to create tomograms which are
processed by our custom design convolutional neural network.
Not only does this system provide high localization accuracy
for a single moving user with an average mean error of 17.1
cm standing and 18.9 cm moving. It also enables multi-user
tracking with an average mean error of 39.6 cm for two users
(moving) and 72 cm for 3 to 5 moving users. Furthermore, this
work demonstrates that a pre-trained model can be deployed
to a new area (without the need for re-training) while still
being able to achieve good localization of accuracy sufficient
for many indoor localization applications.

Finally, our results reveal new system capabilities in terms
of localization accuracy, real-time performance, frame rate,
and deployability that have not been demonstrated in prior
work. These advancements fundamentally lower the barrier to
deploying device-free tomographic localization systems in the
real-world. Ultimately, enabling users to benefit from location-
aware services and smart environments without the need to
continuously wear a transponder or carry a mobile device.
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