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Figure 1: A conceptual depiction of the SAWSense sensing system. A user presses their nail against the table and performs a 
fing gesture (Panel A). When the fnger contacts the table, a Surface Acoustic Wave is generated and propagates along the 
surface-to-air boundary and is sampled by a Voice PickUp Unit (VPU) (Panel B). The output of the VPU is converted and 
depicted in Panel C. The gesture is then classifed with our machine learning pipeline (Panel D) and, as one possible application, 
is integrated into the feet of a laptop to extend the interaction area to the surface (Panel E). 

ABSTRACT 
Enabling computing systems to understand user interactions with 
everyday surfaces and objects can drive a wide range of applications. 
However, existing vibration-based sensors (e.g., accelerometers) 
lack the sensitivity to detect light touch gestures or the bandwidth 
to recognize activity containing high-frequency components. Con-
versely, microphones are highly susceptible to environmental noise, 
degrading performance. Each time an object impacts a surface, Sur-
face Acoustic Waves (SAWs) are generated that propagate along the 
air-to-surface boundary. This work repurposes a Voice PickUp Unit 
(VPU) to capture SAWs on surfaces (including smooth surfaces, odd 
geometries, and fabrics) over long distances and in noisy environ-
ments. Our custom-designed signal acquisition, processing, and ma-
chine learning pipeline demonstrates utility in both interactive and 
activity recognition applications, such as classifying trackpad-style 
gestures on a desk and recognizing 16 cooking-related activities, 
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all with >97% accuracy. Ultimately, SAWs ofer a unique signal that 
can enable robust recognition of user touch and on-surface events. 

CCS CONCEPTS 
• Human-centered computing → Interaction devices; Ubiq-
uitous and mobile devices; Gestural input; • Hardware → Sensor 
devices and platforms. 
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1 INTRODUCTION 
Efective means of enabling computing systems to sense and under-
stand user gestures, activities, and the context in which objects are 
used can enable a wide range of interactive and assistive technolo-
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audio event classifcation. While these methods are efective in well-
defned applications, they lack the fdelity and sensitivity to sense 
many surface-based events. For example, depth cameras struggle 
to resolve hover vs. touch events, and microphones cannot “hear” 
very quiet surface events. Additionally, cameras and microphones 
are often susceptible to issues in real-world environments, such as 
line-of-sight interference and background noise, such as speech or 
music, which degrade the performance of their applications. 

To address these shortcomings, researchers have explored vari-
ous methods for integrating sensing mechanisms into planar and 
curved surfaces to better capture the precise timing and nature of 
user and object interaction events. Examples include capacitive sens-
ing arrays [13, 23, 73], conductive paint [72], and resistive sensor 
arrays [1, 15, 29], which are integrated into the surface of the object. 
Additionally, optical methods have been explored using arrays of 
break beam sensors [27, 47], and multiple time-of-fight sensors 
[9, 68]. To overcome the high instrumentation costs of covering 
surfaces with dense sensors, researchers have investigated methods 
for detecting the physical vibrations caused when a user’s fngers 
or an object touches a given surface, thus requiring only one or 
two instrumentation points. However, acoustic sensing methods us-
ing microphones that rely on measuring propagating sound waves 
are easily overwhelmed by ambient environmental noise and thus 
must typically limit their sensing bandwidth to a few kilohertz [24]. 
Likewise, geophones and accelerometers that measure mechanical 
vibrations also have low sampling bandwidth (less than 250Hz), and 
piezoelectric-based contact microphones are designed to resonate 
only at the design frequency of 2-4kHz and thus are best used to 
detect impulses over relatively short distances. This bandwidth 
limitation ultimately restricts the ability of these approaches to 
support various applications across diferent environments. 

To overcome issues related to sound and vibration-based sensing 
on surfaces, this paper investigates Surface Acoustic Waves (SAWs), 
methods to capture these signals for robust gesture interfaces, and 
the detection of human-object interaction events with minimal in-
strumentation overhead. Similar to sound and mechanical vibration, 
Surface Acoustic Waves are generated when an object, such as a 
user’s fnger, makes contact with a surface. However, unlike sounds 
(which propagate through the air) and mechanical vibrations (which 
propagate through the bulk of the medium), SAWs are bound to 
the surface-to-air boundary and propagate as 2D waves along the 
surface of an object. Furthermore, SAWs have several unique prop-
agation characteristics, such as low attenuation and immunity to 
sound waves, permitting them to be captured at longer distances 
and in noisy environments, ideal for surface-based sensing. 

To take advantage of SAWs, we repurpose a Voice PickUp Bone 
Sensor (VPU) [11] which was originally developed for earbuds to 
capture waves traveling from the vocal cords to the tissues in the 
inner ear, allowing a person wearing them to speak and be heard 
clearly in a crowded and noisy environment. These sensors are 
hermetically sealed, allowing them to reject sound waves through 
the air and capture SAWs only through contact. Importantly, they 
are fabricated using a MEMS process, granting them the bandwidth 
and physical footprint typical to traditional MEMS microphones 
found in commercial of-the-shelf devices. Through an initial set 
of experiments, we found these VPUs capture 96.9% more informa-
tion power than accelerometers/geophones and maintain a similar 

bandwidth to traditional microphones while being robust to envi-
ronmental sounds. These VPUs form the inputs to the SAWSense 
pipeline, which features signal processing and machine learning 
optimized for Surface Acoustic Waves. 

To illustrate the breadth of SAWs and their utility for various in-
teractive applications, SAWSense was evaluated across two domains 
of HCI research: gestural input and ubiquitous activity recognition. 
On traditional fat surfaces, such as on a desk, SAWSense recog-
nizes trackpad-style gestures and, with the aid of a second VPU 
sensor, can also infer the direction of these gestures. In the home 
environment, SAWSense can perform activity recognition tasks and 
robustly classify 16 diferent cooking-related events, even in the 
presence of noise. In all of these evaluations, SAWSense achieved 
>97% classifcation accuracy. To illustrate additional future avenues 
of research, SAWSense explored SAWs on odd geometries, such as 
playful interactions with a dragon toy and 3D-printed tangibles – 
even on a scaled-back pipeline that can run on microcontrollers. 
Additionally, we used SAWSense to explore interactions on fabrics, 
such as a jacket sleeve, showing SAWs are not limited to rigid sur-
faces. While there is no one-size-fts-all sensing approach, SAWs 
demonstrate a unique set of properties that make them practical 
for various surface-bound tasks. Overall, while prior work has ex-
plored vibroacoustic-based contact sensing, we show that SAWs are 
a practical sensing approach that is low cost, low power, has a small 
profle, is robust to ambient noise, and can work across surfaces of 
diferent materials and shapes, making SAWSense a more practical 
approach for surface-acoustic sensing. 

This paper makes the following contributions to the use of Surface 
Acoustic Wave sensing for surface event recognition: 
(1) A new sensing modality for capturing Surface Acoustic Waves 

(SAWs) 
(2) An information power analysis used to optimize SAW signal 

processing and machine learning performance 
(3) A system that can robustly detect SAW-based gestures and 

events in acoustically challenging situations 
(4) A data augmentation and feature transformation pipeline that 

enhances cross-users and cross-material accuracy 
(5) A demonstration of the breath of SAW sensing applications on 

non-traditional surfaces 

The remainder of the paper is organized in the following man-
ner: Section 2 presents a review of relevant literature to contextu-
alize SAWSense with other touch and object recognition sensing 
methods. Section 3 provides a brief introduction to Surface Acous-
tic Waves, followed by a series of technical comparisons between 
standard sensors and VPUs. Section 4 describes the hardware im-
plementation of SAWSense and the design and validation of the 
signal processing and machine learning pipeline. Section 5 eval-
uates SAWSense in a range of usage domains, demonstrating the 
breadth of Surface Acoustic Waves that are useful for classifying 
surface-related events. Section 6 details potential avenues for future 
works and discusses the results and limitations of SAWSense. 

2 RELATED WORKS 
This section contextualizes SAWSense’s contribution along three 
axes: the sensor type (passive contact-based sensing approaches), 
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the signal processing and machine learning approach (acoustic 
event detection), and the application domain (surface interaction). 
We now describe each area relative to SAWSense in further detail. 

2.1 Passive Sensing for Contact-based 
Interaction 

Making surfaces interactive to touch and contact is a well-established 
area of research in the HCI literature. One approach is to integrate 
sensing into the surface of interest, such as a wall or object, through 
conductive paint [72], capacitive sensing arrays [13, 23, 73], and 
resistive sensing arrays [1, 15, 29]. For example, Touch and Activate 
[49] use piezotransducers to inject acoustic signals into an object 
to determine touch events. However, these systems are all active 
sensing systems and require either the entire surface to be treated 
or multiple instrumentation points. Passive sensing approaches do 
not utilize an active signal, which can potentially improve the ease 
of instrumentation. For example, IDSense [40] requires only the 
addition of a single RFID tag on an object to enable touch detec-
tion. However, that object must be within range of an RFID reader. 
The predominant optical approach is depth-image-based methods 
[7, 65–67], which drive interactive experiences such as RoomAlive 
[33] and WorldKit [69]. Other optical approaches where a camera-
style device is placed in the environment include LaserWall [51], 
which uses a laser rangefnder, and HeatWave, [38] which places 
a thermal camera above a surface and uses heat transfer from the 
hand to determine touch events. Finally, other optical approaches 
to determine touch events include arrays of break beam sensors 
[27, 47] and time-of-fight sensor arrays [9, 68]. 

Most similar to SAWSense are vibroacoustic touch sensing ap-
proaches [22, 60, 71] that use IMUs [21, 32], geophones [28, 50], 
piezodisks/contact microphones [8, 41], and traditional microphones 
[24, 25, 31, 37]. While accelerometers and geophones are robust 
to environmental sound, they have bandwidth limitations (typi-
cally less than 250Hz) and cannot sense higher-frequency events. 
Piezodisks, which are resistant to external sounds, typically have 
a design (resonant) frequency and provide very small signals out-
side of those frequencies. For greater overall sensing bandwidth, 
systems can utilize traditional microphones but must incorporate 
high-pass flters since background noise from the environment can 
pollute the incoming signal and degrade performance [24, 26]. Thus 
there is a need for a wide-band sensing approach that is robust to 
external sounds for contact-based sensing. 

Recently, novel and specially designed Voice Pick Up (VPU) sen-
sors have been developed to capture a speaker’s voice through 
contact with the skin without capturing environmental sounds. 
SAWSense repurposes these sensors to capture Surface Acoustic 
Waves, which cannot be induced by external sounds. These devices 
maintain the rich signal qualities of geophones (with greater band-
width to efectively represent speech) while maintaining a small 
MEMS footprint similar to IMUs, enabling easy integration into de-
vices. These devices have only very recently entered the academic 
literature for bone-conduction-enhanced speech recognition [39] 
and advanced hearing aid research [54]. Since the VPUs sensors 
ofer new capabilities, we provide a comparison to accelerometers, 
geophones, and traditional microphones in Section 3. 

2.2 Acoustic Event Detection 
While IMUs and geophone-based sensing ofer an established ap-
proach for detecting surface interaction events with robustness 
to environmental noise, they have relatively narrow bandwidth 
[12, 61] compared to traditional microphones [2] making them un-
able to fully take advantage of existing multi-class acoustic sound 
recognition (ASR) and sound event detection (SED) pipelines. Al-
ternatively, while traditional microphones have a well-established 
ability for use in multi-class sound classifcation, the sounds of 
surface-based gestures overlap in frequency with speech, music, 
and other environmental sounds, presenting a challenge for ro-
bust operation in real-life environments. The VPU ofers similar 
bandwidth to traditional microphones, providing an opportunity 
to leverage conventional ASR/SED techniques, all while having the 
environmental robustness of IMUs and geophones. 

Traditional ASR and SED pipelines typically convert time-domain 
acoustic waves into features like Fast Fourier Transforms (FFTs) 
and Mel-frequency Cepstral Coefcients (MFCCs). These features 
enable machine learning algorithms to enhance human speech fea-
tures, reduce computation complexity, improve generalizability, 
and homogenize the inputs to an ML pipeline [57]. For example, 
Piczak et al. [53] and NELS [17] both use 60 mel-bands to extract 
features for environmental sound classifcation. Bello et al. provide 
a deeper explanation of MFCCs and a survey on urban sound featur-
ization, augmentation, and classifcation techniques for traditional 
microphone audio [6]. However, MFCCs may not be the optimal 
feature for non-conventional audio. For instance, PrivacyMic uses 
log-bin FFTs to distribute more features at lower ultrasonic fre-
quencies [30]. Since featurizing passive wide-band SAW signals is 
underexplored, SAWSense uses an information-power approach to 
design a custom MFCC where the location and range of the flter 
banks are optimized for SAWs instead of human sounds. 

Beyond traditionally crafted features, systems such as Sound-
Net [4] and AudioSet [20] have leveraged large datasets to train 
Convolutional Neural Nets (CNNs) that can process raw audio wave-
forms directly, bypassing the need for hand-crafted features. In the 
absence of large datasets, these approaches beneft from sound 
augmentation, which rapidly generates synthetic data with added 
noise and efects (e.g., pitch shift, reverb, time stretch) from rela-
tively small datasets, to improve the recognition performance and 
robustness of their models [6, 58]. While SAWSense ultimately uses 
traditional feature modalities and much smaller machine learning 
models, our preliminary results show that augmentation methods 
are compatible with SAWs, improving across-user performance for 
trackpad-style gestures. Furthermore, Section 5 shows that training 
data collected on one material type can be transferred to a diferent 
material type using a non-linear transform. 

2.3 Surface Interaction 
In ubiquitous and aware-home applications, previous works have 
explored hand-to-surface applications, including Direct [70] and 
WorldKit [69]. With emerging AR/VR input needs, works have 
explored placing virtual keyboards on physical surfaces as haptic 
sources and demonstrate the capacity for on-table virtual keyboard 
typing via camera systems [43, 56]. These camera-based works ac-
knowledge that there are drawbacks to optical approaches to track-
ing the placement of fngers relative to surfaces. As a workaround, 
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these systems place a virtual plane with a fxed distance above the 
physical surface where the fnger has to cross to register as a tap, 
efectively requiring the hands to hover above the surface unlike 
traditional physical inputs. However, it is especially important for 
immersion into AR/VR experiences to maintain traditional physical 
input modalities and incorporate tactile feedback so that the user 
can employ afordances from the real world in the virtual world. 

Recent works like Acoustico [22] and TapID [45] specifcally 
explore using wearables to aid in surface tap detection for AR/VR 
environments. These devices work in concert with optical-based 
hand tracking, which provides a general location of the hands, 
and these systems precisely detect touch events. Similarly, SAW-
Sense explores improving surface tap and gesture detection, but 
instruments the surface of interest directly with a single sensor. 
Additionally, SAWSense explores these touch events on objects and 
clothes, as detailed in Section 5 and Section 6. 

3 SENSOR COMPARISONS 
This section provides a brief introduction to Surface Acoustic Waves 
(SAWs) and their wave characteristics, followed by a series of com-
parisons between three commonly used sensors (accelerometers, 
microphones, and geophones) and a Voice PickUp (VPU) sensor. 
The frst comparison is a frequency response evaluation, measuring 
the range of frequencies that these sensors can reliably capture. A 
distance response evaluation compares the sensing range of each 
sensor. A qualitative evaluation details the behavior of these sensors 
in a variety of conditions, such as in a noisy environment and on 
diferent surface materials. Finally, a small-scale desk-event classif-
cation task compares the relative information power and machine 
learning (ML) performance for common ofce events when using 
each of the four sensors. Through each evaluation, VPUs show 
qualities that are ideal for a wide variety of surface-bound sensing 
tasks, matching or outperforming the other three sensors. 

3.1 Brief Introduction to SAWs 
When an object impacts a surface, such as a table, the object initi-
ates a transfer of kinetic energy into the material, which launches 
1) an acoustic wave that travels through the air as sound, 2) a 3-
dimensional mechanical wave that travels through the bulk of the 
medium (e.g., a table) as vibrations, and 3) a 2-dimensional Surface 
Acoustic Wave which is coupled to the surface-to-air boundary 
of the object and thus propagates along the surface. SAWs are a 
sub-class of acoustic waves that are an amalgamation of several 
propagation mechanisms: Rayleigh waves that include both longi-
tudinal and transverse propagation components and Love waves 
that are horizontally polarized surface waves [10]. 

The propagation characteristics of Surface Acoustic Waves ofer 
unique advantages as a sensing modality. Most notably, since SAWs 
are coupled to a two-dimensional surface, their in-plane amplitude√
decays at a rate of 1/ � (where � is the radial distance from the 
source of impact). Compared to bulk mechanical waves (i.e., vibra-
tions) that propagate in three dimensions as they travel through√
the body of the object and decay at a rate of 1/ 3 � , SAWs propagate 
for longer distances. As shown in Section 3.4, SAWs can be detected 
nearly anywhere on the surface of a table due to their low rate of 
attenuation. Additionally, SAWs are only generated through direct 

physical coupling, and there is no transfer mechanism from free-air 
acoustic signals to surface acoustic signals. As a result, sounds in 
the environment (e.g., speech, music) do not interfere with SAWs 
propagating along an object’s surface. This is particularly advan-
tageous for sensing in real-world noisy environments, which is a 
challenge for traditional microphones since background noise often 
overlaps with the signals of interest in audio-based sensing tasks. 

Historically, Surface Acoustic Waves have been studied in the 
feld of seismology, where earthquakes generate low-frequency 
SAWs that propagate along the surface of the earth and can be 
used to help infer underground geological structures [3]. Works 
have leveraged the active use of SAWs for fow measurement [35], 
precision droplet direction in microfuidics [19], and tactile dis-
plays [48]. Active SAW sensors are becoming more commercially 
available, but operate as tuned narrowband emitter/receiver pairs 
with MHz to GHz center frequencies [16]. Within the HCI litera-
ture, Swaminathan et al. [63] use a 174MHz emitter/receiver pair 
to instrument surfaces. An in-depth explanation and analysis of 
SAWs can be found in [10]. For reference, SAWSense is not an active 
SAW sensing approach and is passively sensitive to a wide range 
of frequencies in the kHz range (roughly 0-20kHz) as opposed to 
narrowband frequencies in the MHz and GHz ranges. 

More recently, Voice PickUp (VPU) sensors have been devel-
oped to capture the waves that propagate from a person’s vocal 
cords to the tissues in the ear canal while speaking, allowing for 
in-ear headphones to capture speech reliably even in the presence 
of signifcant environmental noise. Importantly, to faithfully cap-
ture speech sounds, these sensors need to have a relatively wide 
bandwidth. Additionally, these devices are hermetically sealed and 
do not capture acoustic waves from the air (i.e., sound); there is no 
acoustic leakage when the vent hole is sealed after the refow pro-
cess [11]. As a result, the qualities that enable VPUs to efectively 
capture speech in-ear without capturing external sounds are also 
useful for a wide range of sensing tasks evaluated in this work. 

3.2 Sensor Selection 
As detailed in the Related Works section, there are three commonly 
used sensors for surface-based activity and event detection: the 
accelerometer, microphone, and geophone. While there are many 
accelerometers to choose from, the STMicroelectronics LSM9DS1 
[42] is a readily available accelerometer and is found in the Ar-
duino Nano 33 Sense. It can sample reliably up to 500Hz and is 
generally representative of the kinds of higher-end accelerometers 
found in commodity devices. For our microphone, we selected the 
MiniDSP UMA-8 [64], which uses 7 low-noise, low-distortion, om-
nidirectional microphones [62] and is representative of the types 
of microphones found in many smartphones and smart speakers. 
We set the UMA-8 to “raw output” mode to avoid introducing ad-
ditional factors in this evaluation and selected the channel facing 
in the “forward” direction, which is sampled at 48kHz. For the 
geophone, we selected the ION Inc. SM-24 [61], which is the same 
model as the ones used in many prior HCI works, such as Sur-
faceVibe [50]. We paired the geophone with a Behringer UM2 [5] 
as our Analog-to-Digital Converter (ADC), which we confrmed 
to have a fat frequency response from 0.01Hz to 24kHz using a 
function generator [36], and set the sampling rate to 48kHz. Finally, 
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Figure 2: On the left, the relative size of each standalone sensor compared to a fnger. On the right, the placement of the VPU 
(A), geophone (B), accelerometer (C), and traditional microphone (D) on a wooden workbench for the frequency response, 
distance response, and classifcation task evaluations. We note that while (D) contains 7 microphones, which increases the fnal 
size of the device but has no adverse efects on sensing ability, only one microphone is used in the evaluation. 

we set our VPU-based sensor to a sampling rate of 48kHz. All de-
vices were connected to a laptop via USB, and a script was run to 
simultaneously capture synchronized samples. All evaluations in 
this section were conducted in a large, quiet room (roughly 7.5m 
X 6m) with the workbench in the center of the room and no other 
occupants. The room did not have noticeable echos and contained 
ofce chairs, other workbenches, and fabrication tools (e.g., laser 
cutter, 3D Printer) that were not in operation. The sensors and their 
placement on the workbench can be seen in Figure 2. 

3.3 Frequency Response Evaluation 
Frequency response ofers a metric to better understand the breadth 
of frequencies that these four sensors can reliably capture. In or-
der to compute the frequency response for each device, a speaker 
was used to generate the three types of waves (vibrations, sounds, 
and SAWs) across a wide range of frequencies for each sensor. The 
speaker’s driver generates sound for the microphone, and the move-
ment of the driver causes the housing of the speaker to impact the 
surface at a given frequency, creating both free vibrations and SAWs. 
We selected a reasonably sized single speaker (GigaWorks T20) and 
set the speaker driver-down on a wooden workbench. A function 
generator [36] provided input to the speaker, performing a linear 
sweep from 1Hz to 20kHz. We visually verifed the speaker’s driver 
oscillating at the lower frequencies and confrmed the speaker’s 
sound output at 20kHz using a Dodotronic 384kHz microphone 
[14], confrming no internal flters limited the speaker’s output. The 
volume of the speaker was set to be sufcient for the housing to 
impact the surface and generate vibrations and SAWs but without 
causing the microphone to experience clipping/saturation. The sen-
sors were placed 36cm away (the minimum distance that did not 
cause saturation/clipping across all four sensors) from the speaker 
and captured the sweep simultaneously. We note that this experi-
ment was conducted in quiet conditions so as to not unreasonably 
hamper the regular microphone’s performance. 

We fnd a generally fat frequency response below 100Hz for 
the accelerometer, but its overall bandwidth (250Hz) is limited by
the sampling rate of the sensor. For the microphone, we fnd a 

steep drop after 10kHz, which largely matches the manufacturer’s 
datasheet. This attenuation for higher frequencies, however, does 
not mean the microphone cannot capture higher-frequency signals 
at all. The UMA-8, under these experimental conditions, captured 
the signals distinctly above the noise foor. This attenuation may 
not ultimately impede the microphone’s ability to sense hand activ-
ities since Braun et al. [8] only observed signals up to 12kHz using 
a microphone. While the geophone is sampled at 48kHz, we see a 
steep drop in the response above 400Hz. We note, however, that the 
geophone’s datasheet claims 240Hz bandwidth, frequencies above 
which are stated to be spurious. Faber et. al provides a deeper ex-
planation of spurious frequencies [18]. Finally, the VPU maintains 
a relatively fat response, with a peak just before 10kHz. Figure 3 
(left) shows the normalized frequency response curves for all four 
devices. Overall, from a bandwidth perspective, the VPU maintains 
signifcantly more bandwidth than accelerometers/geophones (al-
most 40x greater), allowing it to capture a richer set of frequencies 
more akin to that of regular microphones. Ultimately, we expect 
the VPU’s signifcant bandwidth to better resolve a greater variety 
of events than accelerometers and geophones. 

3.4 Distance Response Evaluation 
While bandwidth considerations are important, the distance re-
sponse defnes the overall sensing range of these devices. To evalu-
ate signal fdelity across distances, a small glass marble (5.5 grams, 
Dia=1.5cm) was dropped from a height of 5cm on a wooden work-
bench to create a standardized and repeatable impulse. We marked 
out distances logarithmically at 5, 8, 10, 13, 23, 28, 46, 56, 69, 84, 104, 
and 130 cm and recorded the peak amplitude of the impulse at each 
distance for each sensor. Figure 3 (right) shows the relative signal 
peak in dB with a -3dB reference line. We reiterate that this experi-
ment was conducted in quiet conditions so as to not unreasonably 
hamper the regular microphone’s performance. 

While all sensors were able to capture the impulse with a signal 
strength above -12dB at 130cm, only the geophone and VPU were 
able to maintain above -3dB at 84cm, almost double the distance vs. 
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Figure 3: On the left, the frequency response curves from 1Hz to 20kHz are shown for the four sensors. The Nyquist limit of 
the accelerometer is denoted with an “X” and the spurious frequencies per the geophone’s datasheet are denoted by a dashed 
line. On the right, the distance response curves from 5cm to 130cm are shown for the four sensors. Overall, we observe only the 
microphone and VPU have bandwidth in the kilohertz ranges and only the geophone and VPU maintain -3dB response at 84cm. 

Figure 4: The plots on the left show the raw signal from the four sensors when a marble is dropped on a wooden workbench 
from a distance of 130cm. The dashed vertical red lines denote the three bounces of the marble. The plots on the right show the 
raw signals from the four sensors when a fngernail is used to tap the workbench, denoted by the dashed vertical line, while 
there is sound playing in the environment. Only the VPU has the sensitivity to capture the third bounce of the marble and be 
robust to external sounds. 

the accelerometer. Additionally, peak signal strength is only one 
facet of overall signal fdelity; when we examine the raw signals 
at 130cm (see Figure 4, left), we observe that only the regular mi-
crophone and VPU are able to capture the third bounce at 130cm; 
the signal is too small to resolve above the noise foor for the ac-
celerometer and the ringing inherent to the mass-spring system of 
the geophone dominates. These results indicate that it is possible to 
instrument a single point and capture the signal from interaction 
events over an entire table’s surface using the VPU. 

3.5 Environment and Situational Comparisons 
The frequency and distance response comparisons show the signal 
fdelity of the four sensors in relatively ideal conditions. However, 
other factors reveal particular advantages and disadvantages for 
each sensor. This section details the behavior of the four sensors in 
common real-world environmental and situational conditions. 

An important factor for a sensor is its robustness to various 
sources of environmental noise. We evaluated the ability of all four
sensors to pick up events on a wooden workbench when everyday 

sounds (e.g., speech, music) were introduced to the environment 
as noise. For the microphone, the noise was captured along with 
the sound from the event, whereas the other three sensors did 
not capture the noise. Figure 4 (right) provides an example where 
a fngernail tapped a wooden workbench while NPR News Now 
played on a speaker in the room at a normal listening volume. 

An additional factor is how well these sensors can operate on 
a wide variety of surfaces. Typically, most materials can reliably 
generate sounds, vibrations, and SAWs from impulses (e.g., placing 
an item on a surface), but vibrations/sounds/SAWs generated from 
friction (e.g., moving a mouse, swiping with a fnger) are highly 
dependent on the surface. For example, on a wooden workbench, 
all but the accelerometer could resolve both a fnger tap and a fnger 
swipe on the surface. However, on signifcantly smoother surfaces, 
such as glass and granite, only the VPU could resolve the fnger 
swipe above the noise foor. Figure 5 shows examples using four 
everyday materials: a textured wooden workbench, a smooth Ikea 
Linnmon tabletop, a granite countertop, and a glass cofee table. 
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Figure 5: The plots show a fnger tap followed by a fnger swipe on four everyday surfaces. The beginning of each event is 
labeled and denoted by a dashed red vertical line. While all but accelerometers have visible signals above their noise foor from 
swipes on the textured wooden surface, only the VPU visibly captures swipes on the smoother surfaces. 

Finally, the ability to integrate these sensors into devices and on 
various surfaces is a signifcant factor in whether the approaches 
will be adopted in real-world applications. Geophones, which have 
demonstrated signifcant sensing capabilities, are limited by their 
relatively large size (H=32mm, Dia=25mm, Weight=74g), cost ($65), 
and requirement for the mass-spring to be oriented in the direction 
of gravity (i.e., can only be placed upright). Conversely, cheap 
(often <$1 at scale) and small (see Figure 2 for size reference) Micro-
ElectroMechanical Systems (MEMS) versions of accelerometers 
and microphones have found themselves integrated into numerous 
commodity devices. They are also orientation invariant, allowing 
them to be placed virtually anywhere on a surface or object. Since 
the VPU is manufactured using a MEMS process, it is similarly 
small, cost-efective, orientation invariant, and embodies almost all 
the integration advantages of other MEMS sensors. 

3.6 Desk-related Event Evaluation 
While the previous sections provide metrics that help inform the 
utility of a sensor for a set of tasks, we also wanted to evaluate 
whether these characteristics ultimately contribute to improved 
performance in a classifcation task. For this evaluation, we placed 
the four sensors on a wooden workbench in a relatively quiet en-
vironment to not unreasonably hamper the regular microphone. 
Then at a distance of 56cm (roughly half the length of a standard 
ofce desk), we performed a series of common desk-related events: 
placing a bottle, typing on a keyboard, placing a set of keys, moving
a mouse, placing a smartphone, writing on a sheet of paper with 

a pencil, tapping a fnger (without the fngernail), and swiping a 
fnger (without the fngernail). We also collected samples of the 
“nothing” class, where no event took place. We collected 10 1-second 
instances of each, forming a round. We collected 10 rounds, result-
ing in 100 total instances for each class. In order to be as “fair” as 
possible when featurizing the signals from each sensor, we per-
formed a Fast Fourier Transform (FFT) at 1Hz resolution (including 
the DC component), resulting in 251 features for the accelerome-
ter (500Hz sampling rate) and 24001 features for the microphone, 
geophone, and VPU (48kHz sampling rate). Additionally, given the 
diferences in sensor bandwidth and the number of features, we 
opt for an embedded classifcation method that integrates feature 
selection and maximizes the amount of information in the fnal 
feature set used in classifcation. Thus a Random Forest classifer 
(Scikit-Learn [59], default parameters) performs a 10-round cross-
validation, where we train on nine rounds and test on a 10th for 
all combinations, reporting the average results. We found the ac-
celerometer achieved 69.8% (SD = 2.5%), the traditional microphone 
at 81.8% (SD = 2.4%), the geophone at 90.7% (SD = 4.0%), and the 
VPU at 95.0% (SD = 2.4%). As an additional point of reference, we 
observed similar performances for each device when using a Linear 
SVM (Scikit-Learn, default parameters): 75.8%, 83.9%, 93.6%, and 
96.4% for the accelerometer, traditional microphone, geophone, and 
VPU, respectively. We want to explicitly note that these accuracy 
numbers are not necessarily representative of the maximum per-
formance or the total number of the types of events that can be 
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Figure 6: The frequency signature for two of the more subtle 
events, the swipe gesture (left) and mouse movement (right) 
when captured by the VPU. 

achieved by each sensor, but are used to compare the relative per-
formance across sensors for this task and illustrate the types of 
events each sensor is capable of recognizing. 

For the accelerometer, we observed reasonable performance in 
classifying impulse-based events, like placing objects on a surface, 
but a signifcant weakness in more subtle events, like moving the 
mouse or swiping a fnger, which incurred substantial confusion 
with the “nothing” class. We observed a similar but less pronounced 
efect for the regular microphone, which in a quiet environment, 
improved upon the classifcation of impulse-based events but still 
struggled with capturing signals from subtle events. The geophone 
had improved overall performance compared to the prior two sen-
sors, but the “nothing” vs. “mouse” comparison remained the single 
largest source of error. The VPU overall had the best performance, 
with the best individual performance in 6 out of the nine classes. 
Its largest source of error was the item placement classes, such as 
“bottle”, “keys”, and “phone”. 

When we use the VPU to examine the frequency components of 
the “mouse” and “swipe” class, we see in Figure 6 that mouse and 
swipe movements have signifcant frequency components around 
2.5kHz and above 5kHz. The signifcance of these frequency compo-
nents ofers an explanation for why the classifcation performance 
in these classes is reduced for the accelerometer/geophone, as they 
do not have the bandwidth to capture these higher frequency com-
ponents. For the microphone, even though it can capture these 
frequencies, environmental noise (such as white noise from the 
building AC) even in a relatively quiet location, overlaps with these 
frequency ranges making it more difcult to isolate and thus clas-
sify these kinds of events. As a remedy, prior works, such as Scratch 
Input [24], use a high-pass flter at 3kHz to remove ambient and 
environmental noise. Reconducting the evaluation with a high-pass 
flter for the regular microphone, we observe a signifcant improve-
ment in classifcation performance of the impulse-based classes, 
such as ”keyboard” and “keys”, but at a signifcant cost to “mouse” 
and “swipe” and an overall decrease in performance to 73.0%. For 
clarifcation, prior works such as SurfaceVibe [50] (geophone) and 
Scratch Input [24] (microphone) use fngernails for their tap and 
swipe classifcation; in this evaluation, we do not use fngernails. 

Overall, through these evaluations, the VPU has shown a unique 
combination of elements from the previous sensors – small MEMS 
fabrication (accelerometer, microphone), robustness to environ-
mental noise (accelerometer, geophone), wide frequency response 
(microphone), long-range sensing (geophone, microphone). Most 
importantly, VPUs capture signals in what seems to be an important 
region of frequencies that are present in many surface-based events, 
but cannot be captured by accelerometers and geophones and can
be buried in ambient noise when captured with microphones. We 
quantify the importance of these frequencies in the next section. 

4 SYSTEM DESIGN 
The previous section demonstrated the unique qualities and capabil-
ities of VPUs that ofer advantages over accelerometers, geophones, 
and microphones for surface-bound sensing. Having selected the 
VPU as the basis for SAWSense, in this section, we detail the hard-
ware implementation and include various design considerations for 
those who wish to utilize this sensing approach. We then detail the 
design of our software pipeline for real-time collection and clas-
sifcation of events, which includes an information power-based 
approach to craft an optimized featurization schema for the VPU, 
demonstrating improved classifcation performance over a baseline 
FFT approach. We now describe each in further detail. 

4.1 Hardware Details 
The Sonion Voice Pick Up (VPU) [11] consists of a mass-spring 
diaphragm mounted on top of the sound port of a TDK InvenSense 
ICS-40619 MEMS microphone and then hermetically sealed with 
a cover. A vent hole to relieve pressure changes during the refow 
soldering process is sealed with epoxy per manufacturer specif-
cations, making the VPU “virtually insensitive to acoustic signals” 
[11]. Movement causes the mass/spring diaphragm to oscillate, cre-
ating (sound) pressure which is measured by the MEMS microphone. 
Both the digital output Pulse Density Modulation (PDM) and analog 
diferential output versions of the device were evaluated, and no 
signifcant diferences were found. 

In this work, we utilize the PDM implementation and place all 
components on a single 12mm X 15mm PCB for easier soldering 
(the VPU itself is 2.65mm X 3.5mm), as seen in Figure 7. We use a 
MiniDSP MCHStreamer to perform PDM conversion to a 48kHz 16-
bit datastream over USB Audio Class (UAC), which allows for low-
latency data transfer and is supported by most operating systems 
and useful libraries (e.g., PyAudio [52]). Since our repurposing of the 
VPU signifcantly difers from its initial use cases (contact with in-
ear soft tissue for voice pickup), we performed some initial testing 
on whether factors such as contact angle or weight on the sensor 
afected the signal output. We note that there is a rectangular patch 
on the fat surface of the VPU where the device is sensitive and can 
capture signals. This patch needs to be in contact with the surface 
of interest. The SAWs cannot be picked up if the PCB or housing of 
the sensor is in contact with the surface but not the patch itself. For 
tables and other fat surfaces, a simple 3D-printed housing was used 
to provide strain relief for the cable and orient the VPU towards 

Figure 7: The size of the VPU (A), sensor PCB (B), and 3D 
printed housing (C) relative to a quarter. 
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Figure 8: The feature importances across frequencies for the VPU. The frequency range in green denotes the frequencies 
an accelerometer or geophone can sense (0-250Hz). The frequency range in red denotes the range of typical environmental 
sounds that afect microphone performance but not VPU performance. The frequency range in purple denotes the remaining 
frequencies a microphone can sense. Overall, the range that accelerometers or geophones cannot capture and microphones 
incur noise (250Hz-16kHz) represents 75.4% of the total information power available, providing a signifcant advantage for 
VPUs in classifcation tasks. 

the surface. No additional surface preparation was required. For 
odd geometries and orientations, we afxed the VPU in place with 
tape without any other modifcations, as seen in the Video Figure. 
We note that the 3D-printed housing had no observable efects on 
noise isolation over the tape. Figure 7 shows the size of the VPU 
sensor and its 3D printed housing relative to a US quarter dollar. 

4.2 Feature Importance and Validation 
While the SAW signals collected in the previous section contain fre-
quency components in what appears to be an important range for 
sensing, we can quantify the importance of each frequency band and 
determine their contribution to classifcation performance. While 
there are many ways to quantify feature importance, Gini Impurity 
ofers a closely related metric to actual classifcation performance 
[46]. Thus, we use a Random Forest classifer to generate Gini Im-
purity for each frequency bin using computed FFTs features from 
the previous section. Figure 8 shows the importances from 0-24kHz. 
We observe that frequencies higher than 250Hz (above accelerome-
ter/geophone capabilities) contribute 96.9% of the total information 
power available. Furthermore, when using a microphone, typical 
environmental sounds (e.g., speech up to 8kHz, music up to 16kHz) 
can introduce noise and bury frequencies that represent 78.3% of 
the total information power. Ultimately, the distribution of feature 
importances highlights the value of capturing higher frequency 
signals without also capturing overlapping environmental noises. 

We used this Gini analysis to inform the design of an optimized 
featurization schema for SAW signals. While FFTs ofer a reasonable 
baseline for ofine evaluation, the large number of features may 
slow down classifcation performance. Ideally, we fnd a way to rep-
resent the most valuable frequency bands and capture the greatest 
amount of information while using the fewest number of features. 
Given the distribution of the feature importances, Mel-Frequency 
Cepstral Coefcients (MFCC) appear to be an appropriate choice 
to featurize SAW signals. However, the traditional mel-scale does 
not allocate features in the frequency ranges that would maximize 
the capture of important frequency bands. Fortunately, the Python 
library, librosa [44], can efciently implement a highly-optimized 
custom MFCC (cMFCC) to allocate 128 mel flter banks from 0Hz 
to 18kHz, which represents a frequency range containing 94.5% of
the feature importances. We create a clip-length cMFCC by sum-
ming all components over time. Overall, we reduce the number 

of features from 24001 to 128, which should also improve model 
robustness and performance. 

To confrm that A) this approach matches or improves upon 
the performance of FFTs and B) reduces the prediction time, we 
rerun the cross-validation and fnd a 98.4% (SD = 1.1%) classifcation 
performance, compared to 94.8% with FFTs. The prediction time 
improved from 30ms with FFTs to 20ms with cMFCCs using an Intel 
i7-1185G7. For completeness, using a linear SVM on the Intel i7 
found similar classifcation performance: 95.1% with FFT and 99.4% 
with cMFCC. Given that a linear SVM uses all of the features (and 
does not perform feature selection as part of the algorithm such 
as with the Random Forest), improvement in prediction time was 
more pronounced, from 9ms to 0.5ms, suggesting reasonable per-
formance can be achieved in embedded and compute-constrained 
environments. In the following section, SAWSense is evaluated 
using this pipeline across applications in two distinct HCI domains. 

5 SYSTEM EVALUATION 
In this section, we evaluate SAWSense’s ability to support applica-
tions across two distinct HCI domains, gestural input and activity 
recognition, to illustrate the breadth and versatility of SAWs for 
recognizing everyday surface-bound events. We frst evaluate hand-
to-surface trackpad-style gestures (e.g., taps, swipes, and fings) 
on a desk and demonstrate that SAWSense has the sensitivity to 
sense subtle gestures (such as fnger fings) while also having the 
bandwidth to determine whether the fnger pad or the fngernail 
was used to perform the gesture, efectively creating two “modes” 
for each gesture. We then explore the variety of SAWs generated 
by household appliances and cooking-related events and evalu-
ate SAWSense’s performance in activity recognition tasks in the 
kitchen. For both sets of evaluations, we present the results using a 
linear SVM, a Random Forest, and a 6-layer Multi-Layer Perceptron, 
representing three “tiers” of machine learning complexity. For con-
sistency, all parameters except for the number of Random Forest 
estimators remain SciKit-Learn default. The number of estimators 
was tuned using orders of ten (N=10,100,1000,10000) and found 
N=1000 provided consistent performance for all experiments with 
reasonable training time. N=10000 provided marginally better per-
formance, but at the cost of signifcantly increased training time. 
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Figure 9: This fgure shows the relative placement of the 
sensor to where the gestures were performed and the desk 
used for this evaluation. 

Across these two domains, we found robust performance, with each 
reporting greater than 97% accuracy. We now describe each evalua-
tion in further detail. The following evaluations were conducted in 
accordance with our institution’s Institutional Review Board (IRB). 

5.1 Hand Gestures on Desk 
In this evaluation, we measure our system’s ability to discern subtle 
events through three common trackpad-style gestures (taps, swipes, 
and fings). While prior works have explored these gestures using 
the fngernail, we also record the gestures done using the feshy 
pad of the fnger, resulting in six total gestures. We envision the 
fngerpad vs. fngernail distinction for each base gesture could ofer 
alternate input “modes” for interfaces; for example, a fngerpad tap 
could trigger a left click while a fngernail tap could trigger a right 
click. Figure 10 provides a depiction of these gestures and their 
average frequency signature. Additionally, since these gestures can 
be person-dependent, where fnger/nail texture, location/force ap-
plied, and duration of gesture can infuence the signal, we recruited 
participants and evaluate both per-user and generalized accuracy. 
We also evaluate the efectiveness of augmentation techniques with 
SAWs to generalize surface touch gesture performance. 

5.1.1 Procedure. We recruited 10 participants (four female, six 
male – three had long natural nails, and one had acrylic nail exten-
sions) and asked them to perform multiple data collection rounds 
consisting of six gestures ten times in a random order to introduce 
variety and prevent capturing nearly-identical events. A “nothing” 
class was also collected as part of the round, where no gesture was 
being performed. To keep the length of the study reasonable for 
participants, we asked them to repeat each round 5 times, which 
took approximately an hour and resulted in 350 total instances per 
participant (10 instances x 5 rounds x 7 classes). The full set of ges-
tures was demonstrated once to the participant, but each participant 
was permitted to perform the gesture by what felt natural to them, 
allowing for variations in gesture location, force, and duration. It 
should be noted that participants with longer nails performed the 
fnger pad gestures with their fngers parallel to the table to avoid 
contacting the table with their fngernails. Conversely, participants 
with short fngernails opted to perform the fnger pad gestures with 
their fngers at higher angles while not touching the fngernails to 
the table. All participants had similar fgure orientations for the 
three nail-based gestures. The study was conducted in an open 
ofce/lab environment using a wooden table (Ikea Bjursta). The 
sensor was removed and repositioned at least 60cm away for each 

participant to add variety and realism to the dataset. The dataset 
was collected over the course of a week, during which the table 
was moved, used by other occupants of the room, etc. We note 
that other persons were in the room, working at adjacent desks, 
walking, speaking, etc., and we did not control for typical ofce 
noise and activities. 

5.1.2 Per-User Accuracy. We frst evaluate our per-user accuracy 
by performing a leave-one-round-out cross-validation, where the 
classifer is trained on four rounds and tested on a 5th. We re-
peat this process for all combinations and compute the average 
result per participant. Across all participants, we found a mean 
per-user accuracy of 97.2% (SD=1.3%) when using an MLP Classifer 
(SciKit-Learn, relu activation, adam solver, 6 layers: 1024, 512, 256, 
128, 64, 32). The mean confusion matrix can be found in Figure 
11. We observe that nail-based gestures had higher classifcation 
accuracy than their fnger-based counterparts, but all gestures had 
93% accuracy or better. A t-SNE plot in Figure 11 visualizes a single 
participant’s data, showing that the classes have minimal overlap 
except for fnger fing and nail fing. This overlap correlates to fn-
ger fing vs nail fing confusion, which leads to the largest source 
of error. For completeness, we also perform the cross-validation 
using a linear SVM (default parameters) and a Random Forest (1000 
estimators, all other parameters default). The results can be seen 
in Table 1 which show robust performance even with relatively 
simple ML approaches, suggesting that even greater performance 
can be achieved with more advanced or state-of-the-art models. 

5.1.3 Generalized Accuracy. While the per-user results are promis-
ing, a more challenging evaluation is determining how efective our 
system can perform gesture recognition tasks when A) the location 
of the sensor is not fxed relative to the surface or interaction area, 
and B) individuals perform the gestures with diferent styles. We 
evaluate this “generalized” accuracy by training our system on all 
but one participant and test on the remaining participant. This 
allows us to roughly evaluate how our system would perform for a 
“new” user. We repeat this process for all combinations and report 
the average results. Overall, we found a mean accuracy of 95.2% 
(SD=1.0%) using the MLP classifer across all participants. The mean 
confusion matrix can be found in Figure 11. The results using other 
classifers can be seen in Table 1. 

We suspect the lower performance can be attributed to the size 
of our dataset relative to the number of factors that infuence how 
the gesture is performed; typical sound recognition systems train 
of thousands of labeled instances per class in order to better rep-
resent the true diversity within that class [57, 58]. Taps gestures 
are performed rather consistently across users, hence their rela-
tively high accuracy. However, we observed signifcant variations 
in how each participant performed the swipe and fing gestures 

Table 1: The classifcation performance for gesture recog-
nition in the per-user, across-user, and across-users with 
augmentation conditions across various machine learning 
classifcation approaches. 

SciKit-Learn Classifer Per-User Across-User Across-User w/ Augmentation 

Linear SVM (default parameters) 97.5% (SD=1.4) 94.3% (SD=0.6%) 89.6% (SD=0.3%) 
Random Forest (1000 estimators) 94.7% (SD=3.3%) 92.5% (SD=1.4%) 95.4% (SD=0.2%) 
MLP (relu, adam, 6 layers: {1024, 512, 256, 128, 64, 32}) 97.2% (SD=1.3%) 95.2% (SD=1.0%) 97.6 (SD=0.3%) 
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Figure 10: The six trackpad-style gestures with their motions are depicted in the top row and their frequency signatures in the 
bottom row: fnger tap (A), fnger swipe (B), fnger fing (C), nail tap (D), nail fing (E), nail swipe (F). 

Figure 11: The t-SNE plot for one participant visualizing the diferent gesture classes and the confusion matrices using the MLP 
classifer for the per-user, across-users, and across-users with synthetically augmented SAW training data conditions. 

(e.g., pressure, location, duration, fngernail length, presence of 
hand lotion/moisturizer on the skin). Signifcantly more partici-
pants would be needed to better represent all the diferent ways 
people can perform the same gesture. We observed that 47% of the˜ 
total error was attributed to fnger vs. nail errors (i.e., getting the 
base gesture right but the fngertip type used wrong). This may be 
in part due to participants with short nails also using their fnger 
pad as part of the gesture, and those with longer nails may have 
lightly brushed their fngernails during fnger pad gestures. 

5.1.4 Use of Synthetic Data with SAWs. To improve generalized 
accuracy across participants, we explored the use of traditional 
audio augmentation approaches to improve model robustness to 
real-world user conditions. We generate additional synthetic data 
from our real collected data, which can simulate a variety of dif-
ferent environmental noise, users’ touch duration, force, range, 
and surface textures to ensure our system can maintain high accu-
racy for previously unseen users and usage conditions. We utilize 
the Python package, Audiomentations [34], to create augmented 
versions of our dataset as follows: 

(1) AddGaussianSNR(min_snr_in_db=0, max_snr_in_db=50, 
p=.25) to simulate increased environmental noise. 

(2) TimeStretch(min_rate=0.8, max_rate=1.25, 
leave_length_unchanged=True, p=.25) to simulate diferent 
gesture durations. 

(3) PitchShift(min_semitones=-4, max_semitones=4, p=.25) to 
simulate diferent fnger/nail conditions. 

(4) Gain(min_gain_in_db=-12, max_gain_in_db=12, p=0.25) to 
simulate diferent gesture force. 

Using our original dataset, we generate 20 instances from each 
collected instance, resulting in 7000 instances per participant. We 
featurize each instance using our cMFCC as before. We employ an 
MLP Classifer, which can take advantage of the larger augmented 
dataset, and perform a similar evaluation as before, where we train 
on all augmented instances of nine participants and test on all aug-
mented instances of the 10th for all combinations, and report the 
averaged results. We observe an improved accuracy of 97.6% (SD = 
0.3%) for all gestures, much closer to our per-user performance. The 
mean confusion matrix can be found in Figure 11. For completeness, 
Table 1 shows the performance using other ML approaches. We 
attribute the linear SVM’s decreased performance with augmenta-
tion to the increase in the variety of the dataset, such that classes 
can no longer be cleanly separated with a straight line. Overall, 
we observe that traditional audio augmentation approaches can 
improve model performance for SAW classifcation tasks and help 
quickly bootstrap small datasets. 

5.2 Activity Recognition in the Kitchen 
Acoustic activity recognition is most commonly associated with 
the classifcation of audible sounds captured by microphones. In 
this evaluation, we explore the presence of SAWs in a home kitchen 
environment and use SAWSense to perform activity recognition 
tasks on a kitchen counter, such as detecting the operation of appli-
ances (e.g., blender, mixer), cooking-related events (e.g., chopping, 
peeling), and placement of kitchenware (e.g., forks, mugs). 

https://max_rate=1.25
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Figure 12: This fgure shows the relative placement of the 
sensor on the wood kitchen counter used for this evaluation. 

5.2.1 Procedure. We identifed a number of appliances (food pro-
cessor, stand mixer, blender, air fryer, cofee grinder, water boiler, 
microwave), cooking actions (whisking, opening microwave door, 
peeling, chopping), and placement of objects (fork, bowl, mug) that 
are representative of typical events that happen on kitchen sur-
faces. For the appliance classes, if the device had speed settings, we 
selected the lowest speed and highest speed and recorded them as 
separate classes. For each class, a 1-second clip was captured while 
the device was operating or action was being performed, creating 
a single instance. 10 instances of each class were collected, forming 
a round. 10 rounds in total were collected, resulting in 100 total 
instances across 17 classes (which includes the “nothing” class). In 
this evaluation, we did not control for environmental noise such 
as speech or music, other occupants, and pets in the home, sim-
ilar to real-world conditions. Since this study focuses on objects 
rather than users, no participants were recruited. Figure 13 shows 
an image of each class and its corresponding frequency signature. 

5.2.2 Results. We fnd through a 10-round cross-validation that 
the average performance across 17 classes is 99.3% (SD = 0.7%) using 
a Random Forest classifer. We see among the appliances that there 
is virtually no confusion, as their frequency signatures are very 
distinct. In the remaining classes, there is confusion between classes 
that overlap; peeling and chopping both use a cutting board on the 
surface of the counter; the bowl and mug are both ceramic, roughly 
the same weight, and have similar frequency signatures. Despite 
other events occurring in the home during data collection, the noth-
ing class was very consistent, with no confusion with other classes. 
Overall, this evaluation suggests SAWs ofer a compelling approach 
for in-home activity recognition systems, given their robustness to 
sounds and speech. The t-SNE plots and confusion matrices can be 
found in Figure 14. We also observed robust performance across 
ML approaches, as seen in Table 2. 

5.2.3 Performance Across Materials. To better understand how 
the classifcation performance of SAWSense can generalize across 
materials, the evaluation was reconducted over one month after 
the wooden kitchen counter evaluation using a metal-top kitchen 
island, seen in Figure 15, with the same objects and sensor hardware. 
Ten rounds resulting in 100 instances per activity were collected 

in the same fashion as on the wooden countertop. In performing a 
similar 10-round cross-validation, the average performance across 
17 classes is 99.2% (SD = 0.4%) using a Random Forest classifer. 

However, when using the wooden kitchen counter’s data to 
train the metal kitchen island, and vice versa, the classifcation 
performance is relatively poor: 59.2% (SD = 9.6%). Upon examining 
the waveforms and features of the classes directly, it appears that 
while the spectral signature between classes appears similar, the 
metal kitchen island has signifcantly less attenuation resulting in 
frequency components with signifcantly greater amplitude, leading 
to poor performance when used as features for a model trained on 
wood (and vise versa). We also observed that the attenuation was 
not a fxed amount across frequencies, and there is a “frequency 
response” to each material. 

Rather than collecting instances for every combination of event 
and surface material, one potential avenue to bridge this gap is to 
create a function that transforms the features of one material into 
“synthetic” features of another material. We created two functions 
(i.e., “wood2metal”, “metal2wood”) by computing the mean of fea-
tures across all events and calculating the adjustment to transform 
the cMFCC features of one material into generated features of the 
other material. We perform an evaluation, where metal2wood fea-
tures are used to train a model and tested on wood and wood2metal 
features are used to train a model and tested on metal. In this eval-
uation, we found restored performance, 98.0% (SD = 0.5%) using 
the Random Forest classifer, but only marginally improved per-
formance using the MLP. While we did not evaluate these kitchen 
activities on other home surfaces, such as glass or granite, our ear-
lier evaluation showed that subtle taps and swipes could launch 
SAWs on those materials and thus expect the much more energetic 
kitchen activities to also do the same. Additionally, while we did 
not evaluate on larger surfaces of the same material, since SAWs 
can travel relatively long distances and given how “loud” kitchen 
activity SAWs are compared to taps and swipes, we expect similar 
performance without the need for a new model for the same ma-
terial. Overall, these results indicate a promising path forward for 
creating material invariant models. For example, it should be possi-
ble to collect a small amount of data on a new material to determine 
its transfer function (from one material to another) and then use 
training data from a well-studied material, to create a robust model 
for the new material, thus reducing the need to collect extensive 
training data for all surface types. 

6 DISCUSSION 
In this section, we provide a brief discussion of the results in the 
previous sections, explain known limitations to SAWSense’s sensing 
approach, and present avenues for future work. 

Table 2: The classifcation performance for gesture recogni-
tion in the wood, metal, and cross-material conditions across 
various machine learning classifcation approaches. 

SciKit-Learn Classifer Wood Metal Cross-Material 
Linear SVM (default parameters) 99.5% (SD=0.5%) 99.5% (SD=0.5%) 88.8% (SD=0.2%) 
Random Forest (1000 estimators) 99.3% (SD=0.7%) 99.2% (SD=0.4%) 98.0% (SD=0.5%) 
MLP (relu, adam, 6 layers: {1024, 512, 256, 128, 64, 32}) 95.7% (SD=4.3%) 95.3% (SD=5.8%) 66.2% (SD=1.7%) 
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Figure 13: The sixteen diferent kitchen appliances, actions, or objects, and their frequency signatures. Please note the upper 
limit on the y-axis is adjusted in each class for visualization purposes. 

Figure 14: The confusion matrices show classifcation accuracy for the 17 diferent classes using the Random Forest classifer. 

6.1 Classifcation Performance, Revisited 
While SAWSense achieved reasonable performance in the previous 
sections, we note that A) the same featurization schema was used 
for all of the evaluations and B) the ML approaches are efective but 
by no means state-of-the-art. Our intention in using linear SVM, 
Random Forest, and Multi-Layer Perceptron was to show three 
diferent “tiers” of ML and how the performance is robust regardless 
of ML, demonstrating the utility and expressivity of the sensor 
itself without having to rely on advanced signal processing and ML 
approaches. For example, the linear SVM was able to achieve >88% 
performance in every task with only 128 features. We believe there 
remains signifcant headroom for future researchers and developers 
to optimize system performance. 

More broadly speaking, while advanced approaches can be used 
to squeeze out maximum performance, these approaches often 
require very large training data sets, leading to large model sizes 

Figure 15: This fgure shows the metal top kitchen island. The 
sensor was placed similarly to the wooden kitchen counter 
in the bottom left corner. 
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Figure 16: This fgure shows how the two sensors were af-
fxed to the two right feet of the laptop (left), how the laptop 
was placed on the desk with the two sensors in contact with 
the desk (middle), and where the gestures were performed 
relative to the laptop (right). 

and expensive computing hardware and GPUs that increase the
overall complexity and cost of the system as a whole. The simple ML 
approaches used in this work, highlighted in Future Work examples 
below, can be deployed on limited computing resources, such as 
microcontrollers (e.g., Arduino Nano 33) and microprocessors (e.g., 
Raspberry Pi), matching the overall spirit of SAWSense’s low-cost, 
low-power sensing approach, which enables future avenues for 
widespread deployment and adoption. 

6.2 Sensing Limitations 
While SAWs are robust to external sounds and vibrations, similar 
to traditional acoustic methods, they are still susceptible to the 
“multiple sounds” problem, when multiple surface acoustic events 
are happening simultaneously. For traditional sound methods, mul-
tiple microphones can be used to perform sound source separation, 
such as with Independent Component Analysis (ICA), and each 
separated sound can be classifed individually. We expect SAWs to 
be no diferent, but with only a single VPU, only one sound can be 
classifed at a time. 

One inherent limitation of SAW-based surface sensing approaches 
is that events can only be detected on the instrumented surface. 
For example, if an event happened on one surface (e.g., a kitchen 
counter) and there is no physical connection to another surface 
(e.g., a standalone kitchen island), a single VPU cannot capture 
events that occur on both surfaces (unless the event is very intense 
and can travel through the foor). This is a tradeof with being ro-
bust to environmental noise. Conversely, since the VPUs can only 
pick up events on the surfaces they are connected to and cannot 
pick up sound from the environment, such as speech, they are in-
nately privacy-preserving and ofer a viable approach for always-on 
sensing in the home. 

6.3 Future Work 
6.3.1 Adding a Second Channel for Direction Information. We also 
explore adding a second sensor to see if the direction can be inferred 
as part of a recognized gesture event (e.g., swipe up vs. swipe 
down). We place two sensors on the two right feet of a ThinkPad 
laptop, securing them in place with tape without covering the 
VPU. The laptop is then placed on the same desk as before, where 
the VPUs are in contact with the surface of the desk. We collect 
the following gestures: fngertap towards the back of the laptop 
(“PgUp”), fngertap towards the front of the laptop (“PgDn”), fing 

towards the back of the laptop (“scroll_down”), and a fing towards 
the front of the laptop (“scroll_up”), and the “nothing” class. We 
collect 10 instances of each gesture, forming a round. We collect 10 
rounds in total, resulting in 100 total instances per gesture. Since 
there are 2 channels, we compute the cMFCC for each channel and 
also include a single computed feature of which channel has the 
greater magnitude. Using a second channel, we could distinguish the 
gesture and its direction robustly, with 99.6% (SD = 0.8%) accuracy 
using a linear SVM. This technical demonstration suggests a low-
cost and compelling method for extending the interaction area of 
mobile devices onto the surface of the table around them. 

6.3.2 Support for Odd Geometries and Interaction with Printed Ob-
jects. While the previous sections explore the utility of SAW-based 
sensing on fat surfaces, electronics manufacturers and product 
designers often need to create sensing devices and user interfaces 
on non-planar geometries. However, manufacturing conformal ca-
pacitive and resistive sensing arrays on oddly shaped objects can 
be labor-intensive and/or prohibitively expensive. Surface Acoustic 
Waves will continue to propagate along an unbroken surface, mean-
ing that the instrumentation point does not have to be on the same 
side as the area of interaction. A simple example of this is capturing 
interactions on the top of a table by taping a VPU to the underside 
of the table, as seen in the Video Figure. To demonstrate the efec-
tiveness of SAWSense at enabling complex user interfaces with a 
single point of instrumentation on much more complex geometries, 
a children’s dragon toy, which does not have a fat surface apart 
from the bottom of its feet and is not of homogeneous construction 
(i.e., the surface was not consistently of one material) has been 
created as shown in Figure 17. 

Figure 17: This fgure shows how the sensor was afxed to 
the back of the head of the toy dragon. 

Figure 18: The three interactions with the toy dragon and 
their frequency signatures. Please note the upper limit on 
the y-axis is adjusted in each class for visualization purposes. 
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Figure 19: This fgure shows how the sensor was afxed to 
the inside of the jacket sleeve near the cuf. 

Figure 20: The four on-sleeve interactions and their fre-
quency signatures. Please note the upper limit on the y-axis 
is adjusted in each class for visualization purposes. 

In the spirit of playful interaction, we select two hand gestures, 
a head pat, and a belly rub. We also 3D printed a small bone to 
“feed” the dragon by tapping the bone against its mouth. A “nothing” 
class is also collected. For each class, a 1-second clip was captured 
while the action was being performed, creating a single instance. 
10 rounds of 10 instances per class were collected, resulting in 100 
instances per class. Figure 18 shows an image of each class and its 
corresponding frequency signature. 

We perform a 10-round cross-validation, using the same pipeline 
as in the previous evaluations, and fnd a 100.0% (SD = 0.0%) classi-
fcation accuracy with a Random Forest. Given how diferent the 
frequency signature of each class is, we do not fnd these results sur-
prising. However, we do realize that a 48kHz sampled, 128-cMFCC, 
Random Forest pipeline is quite excessive for recognizing gestures 
on a children’s toy, given the typical constraints (cost, power) asso-
ciated with integrating electronics into toys. 

Thus, since many children’s toys contain microcontrollers, we 
also simulate the performance of the system running on a low-cost 
embedded device, such as a Nordic NRF52. For reference, the NRF52 
series can hardware-decode up to 2 PDM streams at 16kHz 16-bit 
sampling. Thus, we modify our cMFCC to craft 20 features from 0Hz 
to 8kHz (Nyquist limit) and use a linear SVM to perform predictions, 
both of which can be performed in real-time locally on the NRF52. In 
our simulated performance on a microcontroller, we found a 99.7% 
(SD = 0.7%) classifcation accuracy. These results show promise that 
while SAWs can be used to perform more complex recognition tasks, 
the sensing approach remains accessible to simpler approaches on 
low-cost and low-power devices. 

6.3.3 Support for Sof Surfaces and Fabrics. Finally, while the pre-
vious evaluations explored the presence and performance of SAWs 
on rigid surfaces, we also explored whether these signals can be
captured on soft surfaces and used for event classifcation tasks. 

We frst placed a sensor on some soft surfaces (e.g., leather chair 
seat, fabric couch arm) but quickly realized that while the stuf-
ing in the furniture is soft, the surface material (leather, fabric) of 
the furniture is held taut, to which the signals appear only mildly 
attenuated compared to those on the rigid surfaces we described 
earlier. Inspired by other wearable gesture inputs, we instead look 
to explore soft fabrics that are not held taut, like a shirt or a light 
jacket. We selected a Patagonia Nanopuf jacket for this evaluation 
and present our results in two ways, one with the full pipeline and, 
similar to the toy example, one with a simulated embedded device. 

We place the sensor on the inside of the left sleeve near the 
cuf and perform gestures with the right hand on the outside of 
the left sleeve near the cuf, in a similar interaction area to the 
Jacquard jacket [55]. The sensor has sufcient slack in the cable, so 
that movement in both arms remains unrestricted. However, since 
SAWSense’s current implementation is over USB, the gestures are 
collected while seated and tethered to a computer. We adopt two 
of the same gestures from Jacquard, tap and swipe, and also add 
scratch and squeeze. We also collect the “nothing” class. Similar 
to previous evaluations, we collect a 1-second clip per instance, 10 
instances per round, and 10 rounds total, resulting in 100 instances 
per class. Figure 20 shows an image of each class and its corre-
sponding frequency signature. We note that unlike the “nothing” 
class in previous evaluations, the “nothing” class on the jacket has 
a number of nontrivial frequency components. Upon inspecting 
the raw waveforms, we see the presence of signals and confrm the 
origin of these signals to be caused by movement while wearing 
the jacket, such as the fabric of the jacket rubbing against itself. 

We perform a 10-round cross-validation with the full pipeline, 
fnding a 99.2% (SD = 1.3%) classifcation accuracy. Similar to the 
toy evaluation, we also evaluate the performance of the “embedded” 
pipeline with a 10-round cross-validation, fnding 98.6% (SD = 1.0%) 
classifcation accuracy. While these results are promising, we wish 
to explicitly note that these results are meant to evaluate whether 
soft, non-taut fabrics are able to transmit SAWs and whether our 
system can classify them efectively. These results are not meant to 
represent the gesture recognition performance in active life, such 
as while walking or running. 

7 CONCLUSION 
This work has investigated methods for capturing Surface Acoustic 
Waves (SAWs) generated when a user or object touches or operates 
on a surface, using a Sonion Voice PickUp (VPU) bone sensor that 
has been repurposed as a high-bandwidth, high-isolation contact 
microphone. Experimental results show that SAWs exhibit unique 
propagation characteristics fundamentally diferent from sound or 
mechanical vibration, such as propagation along the surface-to-air 
boundary, and exhibit low attenuation compared to bulk waves 
that travel through an object. When captured with the VPU, the 
SAW signals can be detected across a wide range of material types, 
over relatively long distances on the order of meters, and are well-
isolated from background noise which causes issues for traditional 
contact-based recognition systems. 

With our signal processing and machine learning pipeline, SAW-
Sense efectively detects surface gestures and surface-to-object in-
teraction events with signifcantly higher accuracy than alternative 
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approaches. User evaluations show that our system can robustly 
recognize six surface gestures such as taps, swipes, and fings with 
>97% accuracy. For the frst time, a data augmentation pipeline is 
demonstrated for Surface Acoustic Waves that shows the accuracy 
of cross-user gesture recognition can be signifcantly increased, 
reducing the need for extensive data collection for model training. 
Furthermore, object recognition accuracy for SAWSense is >99% 
without signifcant optimization, far outperforming alternative ap-
proaches while being easy to integrate into consumer electronics 
and deployed in activity detection applications. 

To illustrate the utility of SAWs as a signal source for sensing 
surface interaction events, SAWSense was evaluated across two 
application domains, gesture input and ubiquitous activity recog-
nition. On traditional fat surfaces, such as on a desk, SAWSense 
recognizes trackpad-style gestures and, with the aid of a second 
sensor, can also infer the direction of these gestures. In the home 
environment, SAWSense can perform activity recognition tasks and 
robustly classify 16 diferent cooking-related events, even in the 
presence of real-world noise, such as speech or music. Beyond fat 
surfaces, SAWSense can support playful interactions with an odd-
geometry dragon toy and 3D-printed tangibles, even on a scaled-
back pipeline that can run on microcontrollers. Finally, we used 
SAWSense to explore interactions on a jacket sleeve, showing SAWs 
are not limited to only rigid surfaces. In all of these evaluations, 
SAWSense achieved >97% classifcation accuracy. Ultimately, SAW-
Sense demonstrates a low-cost and efective method for enabling 
computing systems to understand surface-based gestures, activi-
ties, and object interaction events that can be combined with other 
sensing modalities, or stand on its own, to enable a wide range of 
interactive and assistive technologies. 
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