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Abstract—Augmented reality (AR) promises to revolutionize
the way people interact with their surroundings by seamlessly
overlaying virtual information onto the physical world. To im-
prove the quality of such information, AR systems need to identify
the object with which the user is interacting. AR systems today
heavily rely on computer vision for object identification; however,
state-of-the-art computer vision systems can only identify the
general object categories, rather than their precise identity. In
this work, we propose IDCam, a system that fuses RFID and
computer vision for precise item identification in AR object-
oriented interactions. IDCam simultaneously tracks users’ hands
using a depth camera and generates motion traces for RFID-
tagged objects. The system then correlates traces from vision
and RFID to match item identities with user interactions. We
tested our system through a simulated retail scenario where 5
participants interacted with a clothing rack simultaneously. In
our evaluation study deployed in a lab environment, IDCam
identified item interactions with an accuracy of 82.0% within
2 seconds.

Index Terms—Augmented Reality, RFID, Object Recognition,
Sensor Fusion, Object Interaction.

I. INTRODUCTION

Augmented reality (AR) enables applications to seamlessly
overlay virtual information onto the physical world, immers-
ing users with interactive digital contents. Recent advances
have brought dramatic changes to user experiences in many
application domains, including retail, gaming, education, and
remote collaboration [1], [2], [24], [30]. In retail, for example,
AR could enable systems to display customizable information
such as online reviews or video tutorials when users interact
with products (Figure 1a). With permission, an AR system
could also remind customers of potential discounts or provide
relevant product recommendations. In a residential setting, AR
could be used to provide real-time instructions as a user builds
furniture or performs repairs. In an industry setting, AR could
allow remote collaboration, delivering expert knowledge to
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Fig. 1. (a) IDCam enables information to be automatically displayed when a
customer wearing an AR headset interacts with a product; (b) In addition to
the RFID infrastructure, IDCam prototype requires a HoloLens headset with
a Leap Motion controller mounted on top.

workers when and where it is needed. These AR scenarios
merge digital information with the physical world to improve
users’ experience and productivity as they perform daily tasks.
However, none of these applications are possible without a
precise understanding of the objects with which the user is
interacting and the task at hand.

One way to automatically detect interactions with an object
would be through an AR headset’s outward-facing camera.
State-of-the-art systems have recently surpassed human per-
formance at identifying objects [5], [6], yet these systems
require excessive training and are limited to classifying item
categories (e.g., mugs, bowls, shirts) without being able to
identify the specific instance of objects within each category.
Real-world object-oriented scenarios require an AR system
to recognize the specific identity of an object, so that they
can be linked to corresponding digital augmentation. Tasks
like recognizing a specific model number for a repair job
or differentiating similar mugs owned by different people
pose serious challenges for systems solely based on computer
vision.

We propose IDCam, a hybrid system that combines two
sensing modalities, computer vision and radio frequency iden-



tification (RFID), to achieve accurate item identification for
seamless information augmentation. We assume that each
item is instrumented with an inexpensive RFID tag and that
there are long-range RFID readers installed in the ambient
environment to query these tags in real-time. We believe such
a deployment is plausible for retail environments in the near
future, given ongoing adoption effort by major retailers like
Macy’s [26]. As people interact with RFID-tagged objects,
they disturb the RF signal that is reflected back to the
reader from the tag. Using insights from prior work [12],
these disruptions manifest in the low-level channel parameters
measured by an RFID reader. IDCam captures these changes
to determine which items are being manipulated and how fast
they are moving. Separately, the motion of the customer’s
hands is tracked via their AR headset using computer vision.
When these traces correlate to one another, users can be
matched to the objects with which they are interacting.

IDCam is capable of identifying objects and sensing inter-
actions even when multiple users are interacting with similar
objects in close proximity to each other. To support this claim,
we evaluated IDCam in a simulated shopping scenario. Two
groups of five participants were asked to interact with 20
clothing items on the same rack simultaneously, which is
beyond the typical density of interactions at a normal retail
store. IDCam was able to match user interactions with object
identities 82.0% of the time within 2 seconds.

Our contributions are the following:
1) A technique that correlates velocity calculations from

RFID and computer vision with different coordinates
systems to match object interactions with users, and

2) An evaluation study in a simulated shopping scenario to
quantify the performance of our system.

II. RELATED WORK

A. Object Identification in Augmented Reality

Real-time object recognition is quickly being realized
thanks to advances in the field of computer vision. Large-
scale open-source image databases like ImageNet [3] provide
a variety of images with which researchers can train and
test their systems. State-of-the art deep learning models have
demonstrated promising results when given large amounts of
images for training [6], [22]. However, the granularity of
datasets like ImageNet is categorical; ImageNet may contain
multiple brands of jeans, but the labels for all of them is
the same. In a retail setting, identifying an object by its
brand and size is critical. Knowing the exact identity of an
object is still very challenging for computer vision given the
visual resemblance of similar products (e.g., the same jeans in
slightly different sizes). New products can be registered in an
existing model, but that would require new pictures of them
taken from different angles and environments, thus incurring
a large deployment cost which limits scalability.

Objects can be easily recognized if they are instrumented
with visual identifiers. Prior work has looked at retrieving item
information through bar codes [10], [20] and QR codes [9].

However, these interactions are not as seamless as they may
sound. Acquiring a picture of a visual code requires that the
code is easily accessible to the customer and that the customer
can properly frame the code within the camera’s view. In
addition, visual code can be obtrusive since it alters the visual
appearance of objects. An important advantage of IDCam is
its ability to seamlessly handle identification as users interact
with objects without explicit actions.

B. RF Sensing

Commercial solutions can achieve coarse-grained RFID lo-
calization using phased array antennas. For example, Impinj’s
Xarray [28] can achieve a localization accuracy of 1.5 m
or less with 85% confidence. This level of accuracy is not
sufficient for detecting object interactions; however, this could
localize items by shelf in a retail setting, reducing the potential
set of users who could be interacting with objects in that
area. To increase localization resolution of tags, prior work
has explored using synthetic aperture antennas on the RFID
reader. These approaches were able to achieve centimeter level
accuracy. For example, Miesen et al. [16], [17] used an antenna
on a linear actuator to create a synthetic aperture. However,
this requires that tagged objects in the environment remain
static while scanning occurs. Wang et al. [25] used a spinning
antenna to create a synthetic aperture, but their system needs
densely spaced marker tags placed throughout the environment
to disambiguate tag motions from reader antenna motions.
Yang et al. [29] demonstrated the use of multiple RFID reader
antennas that can locate various moving tags in harsh multipath
environments. In their system, tags can be located while
traveling at a constant velocity along a known trajectory (i.e.,
on a conveyor belt). In general, RFID localization techniques
has demonstrated promising results showing where objects are
located in physical environments, however, prior work in RFID
localization could not determine which user is interaction with
what items.

Researchers have also explored how RFID systems can be
used to detect user interactions with everyday object. IDSense
[13] applied machine learning techniques on RF channel
parameters to determine when objects were being touched
or moved. PaperID [12] extended this work by providing a
technique to estimate the radial velocity of tags relative to
the RFID reader. Although these systems can track objects
and infer interactions, they can not detect the users involved.
In other words, a solely RFID-based system can sense that
two objects are being manipulated in an environment, but not
whether there are one or two people responsible for moving
those objects or who those people are. In this work, we
leverage techniques presented in prior work to extract a motion
trace for each object instrumented with an RFID sticker and
then correlate these traces with hand motion traces generated
from computer vision to determine which user is interacting
with what items.



C. Sensor Fusion

Sensor fusion has been explored through a number of dif-
ferent sensor combinations for identification proposes. Fusion
between motion data and computer vision has been explored
by the CrossMotion project [27], where visible users can be
correlated with their smartphone’s acceleration data as they
walk through a room. Such a system is feasible for identifying
people since they carry their smartphones with them at all
times, but it is not practical to instrument everyday objects
with IMUs. Researchers have also explored the combination
of computer vision and RFID sensing for user tracking [4],
[14] and item localization [19], [21]. In those studies, the
computer vision and RFID sensing systems are collocated and
installed at relatively fixed locations. For AR scenarios, how-
ever, augmentation happens from a first-person angle, whether
through a smartphone or smart glasses. Because most RFID
sensing systems are bulky, it is impractical for them to be
collocated with the wearable computer vision system, meaning
that they must be decoupled. In this work, we demonstrate
that the two sensing systems can be decoupled and still match
users with item interactions. This is made possible by a real-
time coordinate transformation and trace matching system. In
addition, prior systems require a few meters of user motion to
correlate the motion traces from RFID and computer vision.
In contrast, we demonstrate that item identity association can
happen within tens of centimeters.

III. SYSTEM IMPLEMENTATION

In this section, we will describe the implementation of
IDCam through a AR retail example where IDCam recognizes
customer interactions with products in a retail store and pro-
vides them with relevant information. Our description includes
the hardware requirements to setup IDCam and the software
processing that is necessary on the different data streams.

A. Hardware

Users who wish to leverage IDCam must wear an AR
headset so that they can receive real-time information about
products as an overlay. In addition, the self-localization capa-
bilities of the headset is crucial towards our trace matching
algorithm correlating users with items, which we will discuss
later in this paper. In our implementation, we use Microsoft
HoloLens [7] (Figure 1b). Even though the HoloLens utilized
in our work (Baraboo version released 2016) is equipped
with hand tracking hardware (IR cameras), hand-tracking can
only be triggered by specific hand gestures. To track the
user’s precise hand location continuously, we mounted a Leap
Motion controller [18] on top of the HoloLens (Figure 1b).

To setup a suitable environment for RFID sensing, RFID
readers [8] are mounted on the ceiling to provide good
coverage of the space. An RFID tag [23] is placed on each
object to associate them with a unique identity. RFID tags are
inexpensive, thin, and battery-free, making them as easy to
use as the price tags that are already attached on products.

We implemented IDCam as a HoloLens UWP app using
the Unity 3D game engine. It streams information about the

Fig. 2. A frame showing the output of the Leap Motion controller overlaid
with velocity vectors for the hand ( ~Vh) and the RFID tag ( ~Vt)

user’s head position and orientation to a MATLAB server
running on a desktop PC. The server is responsible for
matching this information with data from the Leap Motion
and RFID antenna, computing the RFID and hand velocities,
and detecting whether an object is being held by the user.

B. Approach

Consider a case where a user picks up a shirt instrumented
with an RFID tag while wearing an AR headset (Figure 2).
Assuming the position of the RFID tag is fixed relative to
the customer’s hand as they take the shirt off the rack, the
velocity vectors of their hand ( ~Vh) and the RFID tag (~Vt) at
any given moment should be approximately equal, so is the
trajectory of the hand ~Th and the tag ~Tt. As a result, even when
there are other customers interacting with nearby items, it is
unlikely that all of the customers will move items in the same
way, especially with respect to the RFID antenna mounted on
the ceiling. Based on this observation, users can be matched
with item interactions through a correlation of velocity vectors
between the RFID tag motion and user hand motion tracked
by computer vision.

The hand position (denoted as X, Y, Z in Figure 2) can be
accessed using the Leap Motion controller’s API. Computing
the change in hand position over time leads to measurement
of ~Vh in the Leap Motion’s coordinate space, which moves
with the HoloLens headset. As the user moves throughout
the environment, the inside-out tracking capabilities of the
HoloLens report the user’s position. We perform a coordinate
transformation to compute the hand position in the world’s
coordinate system using the head position and orientation
tracking APIs built into the HoloLens. We can then computing
the distance between the hand and the RFID reader, which
has a known, fixed location in the world coordinate system.
Meanwhile, the RFID reader can report the phase angle
difference between the transmitted signal and the backscattered
signal. Prior work has demonstrated that the motion trace of
a tag relative to the antenna can be reconstructed by utilizing
the phase information retrieved from multiple communication
channels [12], thus yielding a measurement of ~Vt. Given
the physical co-location of the hand and the item, the two



velocities and the corresponding motion traces should be
correlated in space.

C. Coordinate Transformation

The different coordinate systems of the HoloLens, Leap
Motion, and RFID reader present a challenge in correlating
motion from the RFID tags and hand. In this section, we
describe our approach to align data from these different
systems.

First, we define the reference frames relevant to computa-
tion:
• W: The world reference frame, defined by the position

of the HoloLens during a one-shot calibration procedure.
The RFID reader is specified in this frame based on the
geometry of the environment,

• U: The Unity world frame, defined by the placement of
the app in the environment when launched,

• C: The HoloLens camera frame, defined within U by the
tracking system of the HoloLens, and

• L: The Leap Motion frame, defined by the physical
placement of the Leap Motion on the HoloLens.

We use quaternions to represent all orientations and rotation
of objects.To explain the transformation, we adopt the notation
from [15]. A

B q̂ represents the rotation of frame B relative to
frame A, and A

Cp represents the position of object C in frame
A. Our objective is to compute W

Hp, the position of the hand
in world space.

On the HoloLens, we compute the position and orientation
of the HoloLens in the Unity frame, U

Cp and U
C q̂ respectively,

and stream this to the MATLAB server for further analysis.
To align the Unity and world reference frames, U and W
respectively, we first position the HoloLens at the origin of our
desired world coordinates, pointed toward the floor. We save
these values as U

C0
q̂ and U

C0
p. We now define the HoloLens

camera frame during calibration, C0, as the world frame W.
This allows us to treat U

W q̂ as U
C0

q̂
We can then transform new positions and orientations to

compute the HoloLens position in world space.
W
C q̂ = U

C q̂ ⊗
U
C0

q̂? Head orientation (1)
W
Cp = U

W q̂ ⊗
(
U
Cp− U

C0
p
)
⊗ U

W q̂? Head position (2)

To include data from the Leap Motion hand tracker, we
transform the raw coordinates of the hand in the L frame, L

Hp,
to the HoloLens camera frame. We do this by transforming
the right-handed coordinates of the Leap Motion data to
approximately match the left-handed Unity coordinates by
Equation 3.

U
Hp′ =

−1 0 0
0 0 −1
0 1 0

× L
Hp (3)

The LeapMotion was physically tilted downwards by 20
degrees relative to the HoloLens, so we account for that in
the calculation by rotating estimated hand coordinates in the
opposite direction to obtain an estimate of hand position in
the camera frame, C

Hp. Finally, we obtain the hand position

Fig. 3. A one-second segment of the motion trace tracked of hand Th when
compared to 3 different RFID traces Tt1, Tt2, Tt3.

in world coordinates by applying the HoloLens rotation and
position quaternions:

W
Hp =

(
W
C q̂

? ⊗ C
Hp⊗ W

C q̂
)
+ W

Cp (4)

D. Trace Correlation

There can be thousands of RFID-tagged objects and hun-
dreds of shoppers in retail stores, so it would be infeasible
to compute the velocity correlation between all possible pairs.
IDCam first narrows down the set of items the user could be
interacting with by only considering the items that are seen by
the closest antenna to the user. The sensing area of each RFID
antenna is approximately 200 ft2, so there may still be many
tags that need to be checked. IDCam further reduces the search
space by filtering out tags with insignificant motion. When a
person takes a shirt off of a rack, they are likely to jostle
many of the nearby shirts. We observed that these interactions
usually result in a tag speed of less than 10 cm/s, so IDCam
uses this threshold to ignore items with no significant motion.
Combining the location information of items and the speed
threshold, IDCam narrows the list of potential items that the
user could be handling by a significant margin.

1) Trace Correlation: We illustrate the principle behind
our velocity correlation approach with an example. Assume
that three people grab tagged objects under the same RFID
reader. Figure 3 shows a one-second segment of position data
from one user’s Leap Motion (pink dotted curve) and the
position data of the three tags from the RFID system (blue,
orange, yellow solid curves). The position in both domains was
calculated by integrating the velocity measurements. Given
that the antenna can only infer the relative position change
of items, all of the position traces are aligned at the origin
for easy comparison. By overlaying all four trajectories, it is
clear to see that the motion of Item #3 (yellow) was most
correlated with the participant’s hand (pink). IDCam computes
trace similarity using the Pearson correlation coefficient (PCC)
over 1-second windows with 80% overlap. The object that



leads to the highest correlation coefficient is likely the one
that the user is manipulating, so its information is displayed
on the AR headset.

Using PCC alone for matching is not enough since the
calculation can be noisy. Figure 4 shows an example data set
when a user picks up five different items within 30 seconds in
the vicinity of other active users. Each rising edge indicates
when the user takes an item off the rack (and away from
the RFID reader), while each falling edge indicates putting
items back onto the rack. Green sections represent when
the user was correctly matched with the item they were
handling. Red sections indicate mismatches, which happen
when interactions conducted by other users are falsely matched
with the target user. Black sections indicate that IDCam was
uncertain because no significant motion was detected from
the RFID tags or there was poor correlation between the
two systems. Figure 4A shows an example of how well the
described matching algorithm worked for this example 30
second dataset. Using the PCC correlation, IDCam has a
matching accuracy of 84.0%. Further assumptions can be made
in order to remove brief, spurious matching errors. It is highly
unlikely that a user will handle one item for a few seconds,
switch to a second item for very short period of time and then
go back to the original item; it is more likely that the second
item was mismatched with the customer. IDCam handles these
cases by building a 1-second buffer of correlation results and
then applying a majority vote to smooth out the matching
results. Using this method, matching accuracy in the example
scenario improves to 86.9% (Figure 4B). Nearest neighbor
matching can also be used to reduce brief moments when
no object motion is detected (e.g., the customer is holding
the item, but not moving it). Using this method, matching
accuracy of the example data is improved to 89.5% (Figure
4C).

IV. EVALUATION

We designed a small-scale shopping simulation to determine
how well IDCam could work in a dense space.

A. Study Procedures

A single rack of clothing 1.5 m long was was placed in the
middle of a laboratory space along with an RFID reader. The
rack held 20 articles of clothing that had an RFID tag placed
on the center of their price tag (Figure 5). The proximity of
the clothing was close enough that hangers could jostle with
one another to create possible false positives. An RFID reader
was placed 2 m away from the shelf on the ceiling pointing
down. We recruited 10 undergraduate and graduate students
from a public university (6 male, 4 female). The participants
were separated into 2 groups, each with 5 participants. We
believe the density of users and clothing make our simulation
even more challenging than many real-world retail scenarios.

For each study session, one participant was asked to wear
a HoloLens with a Leap Motion controller. Participants were
asked to pick up articles of clothing by their hanger, read the
product information on the price tag, and then put the hanger

Fig. 4. A test dataset including 30 seconds of RFID/Leap motion tracking
data where IDCam identifies five sequential user-item interactions. (A) Using
PCC alone for matching leads to moments when IDCam is uncertain of of
the interaction; (B) a 1-second voting buffer is applied to smooth the results;
(C) nearest neighbor algorithm is applied for filling in motion gaps.

Fig. 5. Each article of clothing in the study had an RFID tag placed near the
price tag.

back on the rack. The participants not wearing the HoloLens
were allowed to interact with items as they pleased, but the
participant wearing the HoloLens was asked to pick up hangers
in a sequence to facilitate ground truth labeling. Furthermore,
that participant was also asked to extend their hands in front
of the Leap Motion controller as an initialization gesture. This
is because the Leap Motion controller has difficulty tracking
a person’s hand with a cluttered background; our contribution
is not meant to be one of computer vision, but rather one of
sensor fusion, so this was an acceptable limitation for us. Each
of the five participants took turns wearing the HoloLens and
performing the procedure mentioned above.

The start and finish time for each interaction by the person
wearing the HoloLens was annotated using a video recording.
There were 893 item interactions in total generated by all of



Fig. 6. The simulated shopping experience used to evaluate IDCam involved
five participants interacting with clothing on a rack. One of the five participants
wore a HoloLens with a Leap Motion controller mounted on top

Fig. 7. The accuracy of item identification improves with longer duration of
item interactions.

our participants, 200 interactions of which were generated by
users wearing the HoloLens. Each session took 5.1 minutes on
average. Each item interaction took 13.7 seconds on average,
which means that four tagged items were typically in motion
simultaneously.

B. Study Evaluation

Despite the initialization gesture we asked participants to
use for better Leap Motion tracking, there were 17 interactions
among the 200 collected in the user study that were not
properly tracked. For the 183 item interactions that were fully
or partially successfully tracked, the hand motion traces were
transformed into the RFID antenna’s coordinate space and
compared them to RFID tags.

Figure 7 is a cumulative distribution function showing
IDCam’s interaction matching accuracy as a function of the
time duration of the interaction traces. After 2 seconds, IDCam
achieved an accuracy of 82.0%. The accuracy improved to
88.0% after 5 seconds of user interactions. At the beginning
of each interaction, it is hard for our system to make accurate
decisions due to the lack of motion. As users generate longer
motion traces, IDCam makes better decisions using the sliding
window and voting buffer approach mentioned previously.

V. DISCUSSION

Our goal was to develop a precise object identification
method for augmented reality that would be easy to deploy
and scale to large number of new objects. We addressed
this goal by proposing IDCam, a system that fuses velocity
information from computer vision and RFID to identify the
precise object-of-interest for a user. IDCam is relevant to a
number of augmented reality applications, but we focused
our evaluation on a simulated shopping scenario where we
challenge IDCam with five simultaneous participants on the
same clothing rack. In that study, IDCam correctly matched
users with object interactions 82.0% of the time within 2
seconds.

The current capabilities of hand-tracking imposes a number
of limitations on IDCam sensing accuracy. There were 17
cases of item interactions where the Leap Motion controller
failed to track the user’s hand. This was primarily due to
the hand being outside of its field-of-view. There were also
additional 10 cases when the hand was only temporarily
tracked. We acknowledge that the current hand-tracking speed
and accuracy is not ideal, but we hope that advancements
in computer vision will lead to more improvements in the
near future. This trend should dramatically improve IDCam’s
accuracy and robustness. We also hope that continuous hand-
tracking APIs will be exposed to developers so that IDCam
can be realized as a self-contained system.

Natural and unconstrained user behavior can be challenging
to evaluate and predict. However, we believe that IDCam can
better handle potential edge cases by providing users with
instructions. As an extreme example, IDCam could suggest
that a user shakes an item, create longer matching traces if
the product is not being detected for some reason.

The reader we used to build our IDCam prototype (Impinj
R420) allows for a maximum read rate around 1000 reads per
second for all tags. IDCam requires a minimum sampling rate
of 10 reads per second per tag to achieve a good velocity
measurement. In cases where each reader has more than 100
tags within the read range, the reduced read rate per tag
will limit the velocity measurement and reducing matching
accuracy. Our evaluation results are generated from a small-
scale lab evaluation study. A more through evaluation in
real-world environments is required to fully understand the
limitations of our system in terms of scalability. The methods
presented in this paper repurely based on signal processing.
In future work, We plan to investigate using machine learning
algorithms such as SVM or CNN to help boost our trace
matching accuracy. In addition, we also want to explore the
possibility of a customized battery-powered wearable RFID
readers with a small footprint and reduced reading range (i.e.,
arm’s reach), thereby reducing the number of tags visible to a
single reader and simplifying the correlation problem.

VI. CONCLUSION

IDCam fuses long-range RFID with computer vision for
linking objects in the physical world with digital contents.
IDCam matches object identity stored in the RFID tag to user



interactions by correlating the motion traces tracked by the two
systems. IDCam is able to differentiate visually similar items
and scale to a large number of new items without requiring
retraining. We plan to deploy and further evaluate IDCam
in a real-world scenario for enhancing costumer shopping
experiences. We believe IDCam has many other applications
in fields such as remote collaboration, AR guidance, and
education. We intend to explore and evaluate these applications
in the future work.
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