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Abstract—Radio Frequency Identification technology has
greatly improved asset management and inventory tracking.
However, for many applications RFID tags are considered too
expensive compared to the alternative of a printed bar code,
which has hampered widespread adoption of RFID technology.

To overcome this price barrier, our work leverages the unique
electromagnetic emissions generated by nearly all electronic and
electromechanical devices as a means to individually identify
them. This tag-less method of radio frequency identification
leverages previous work showing that it is possible to classify
objects by type (i.e. phone vs. TV vs. kitchen appliance, etc). A
core question is whether or not the electromagnetic emissions
from a given model of device, is sufficiently unique to robustly
distinguish it from its peers.

We present a low cost method for extracting the EM-ID from a
device along with a new classification and ranking algorithm that
is capable of identifying minute differences in the EM signatures.
Results show that devices as divers as electronic toys, cellphones
and laptops can all be individually identified with an accuracy
between 72% and 100% depending on device type.

While not all electronics are unique enough for individual
identifying, we present a probability estimation model that
accurately predicts the performance of identifying a given device
out of a population of both similar and dissimilar devices.
Ultimately, EM-ID provides a zero cost method of uniquely
identifying, potentially billions of electronic devices using their
unique electromagnetic emissions.

I. INTRODUCTION

The 5¢ RFID tag was famously claimed to be the tipping
point for the RFID industry that would lead to wide spread
adoption of the technology. While many of the innovations in
cost reduction Sanjay Sarma outlined in 2001 [1] have come to
pass, the 5¢ price point has remained elusive at any quantity.
Presently, EPC Gen2 tags (ISO-18000-6c) can be readily
purchased individually for ∼90¢ online and industry trade
magazines report, that in large volumes, tags can be purchased
in the 7¢ to 15¢ range [2]. While both academia and industry
continue to make strides to reduce the cost of traditional UHF
RFID tags, the reality is that due to inflationary forces the
opportunity for a 5¢ tag may have already passed us by.

In an effort to further reduce cost and tag complexity,
researchers are focusing on developing chip-less [3], [4] and
antenna-less [5], [6] RFID tags. The general rule of thumb
being that; a third of the cost of the tag is the integrated
circuit (IC), the second third is the antenna inlay, and the final
third represents the cost of bonding the two elements together.

Fig. 1. Depiction of an IT professional scanning the unique electromagnetic
noise generated by the unmodified laptops in order to determine their unique
IDs and recover their asset management information.

Therefore by eliminating one of these elements it should be
possible to further reduce the cost of RFID tags.

However, all of these RF methods of uniquely identifying an
object rely on adding some form of tag. For many applications,
RFID is simply dismissed as being too expensive compared
to the alternative of using optical identification in the form
of printed barcodes or QR codes. While barcodes are often
considered to be “free” they do take up valuable real estate on
print media and/or require printed stickers that are manually
applied to objects; both of which represent non-zero costs.
This begs the question: Can Radio Frequency Identification
ever cost less then a barcode?

This paper argues yes it can; and in fact there exists a subset
of over a billion electronic devices that already have a unique
radio frequency identity and are simply waiting to be read. We
introduce a tag-less Radio Frequency Identification method
that uses the unique electromagnetic signatures emitted by
electronic devices as a means to identify individual objects,
even of the same type and model.

Traditionally Electro-Magnetic Emissions (EME) have been
simply thought of as incidental system noise that must be kept
below a certain threshold to meet governmental regulations –
the fact is that EME is highly structured and a direct mani-



Fig. 2. Diagram depicting the process of uniquely identifying an electronic device (in this case a unknown iPhone 6) based on its low frequency electromagnetic
emissions. Panel A shows a low cost EM-ID reader recording the EM signature shown in panel B. This signature is thresholded to remove noise and the
device’s EM-ID is extracted as depicted in panel C. In order to identify what type of device it is, a classification algorithm is done in panel D. Once the
object type is known, it is compared to all other iPhone 6s in the database in order to recover its unique ID, as shown in panel E.

festation of the system circuits that generate it. Furthermore,
variations in the manufacturing process at all levels, from the
integrated circuits, to passive components, and board level
layout all provide further EME differences between devices,
even of the same model.

Figure 1 depicts an application scenario where an IT pro-
fessional scans an unmodified electronic device (such as a
laptop) to extract its unique EM-ID, which is then entered in
a database. Since the EM-ID is persistent over time, the object
can be scanned at a later date and its EM-ID is then compared
to a database for identification. This unique identification
method is free, in the sense that it already exists, cannot be
removed, or be easily tampered with, but it does require that
the device is powered on to generate the EME signal.

Previous work has shown that EME can be used to identify
general classes of objects, for instance household appliances,
computing devices, power tools, automobiles, etc. [7], [8].
However, using these methods it is not possible to uniquely
identify objects of the same model nor is it possible to assign
them individual IDs.

This work introduces a $10 electromagnetic emissions
reader based on a software defined radio and a signal pro-
cessing pipeline that is capable of robustly and repeatedly ex-
tracting the unique EM-IDs of individual devices. An overview
of the system is presented in section II, along with a detailed
description of our new signal processing and ranking algorithm
used to identify individual objects in section IV. Since the
EME signals emitted by a device is an emergent property
and not simply a fixed digital number, section V presents
a mathematical description of the probability distribution of
the EME of a device and our ability to disambiguate similar
devices in terms of the probability of successful identification.
Lastly, experimental results are presented in section VI that
show a wide range of devices of different complexity levels
– from toys to cell phones and laptops – can all be uniquely
and repeatedly read and identified.

II. SYSTEM OVERVIEW

This section provides a general overview of the process
of scanning, classifying and identifying individual devices
based on their electromagnetic signatures. Subsequent sections

provide a deep dive into the algorithms needed for fine-grained
object identification, and details on predicting the identification
performance of a given set of devices.

A. EM-ID Reader Hardware

While lab equipment such as spectrum analyzers and high-
speed oscilloscopes have traditionally been used to capture
the electromagnetic signatures emitted by electronic and/or
electromechanical devices, this work utilizes a software de-
fined radio module based on the RTL-SDR, which works in
conjunction with a smartphone or laptop to form a portable
and low cost EM-ID scanner.

The RTL-SDR [9] is sold online for $10 (USD) and
is based on the Realtek RTL2832 chip which performs I-Q
demodulation and digitizes the IF signal with high speed 8-bit
ADCs. The system streams raw data to a host computer via
USB. In order to sample the low frequency EMI, the RF front
end chip was removed and a WD2142 transformer is used to
feed the raw EMI into the RTL2832 as previously described
in [7].

The internal digital mixer and low-pass filter provides
a selectable frequency window from 0 to 28.8 MHz at a
maximum sampling rate of 3.2 MHz. Since most EM signals
exist at the low frequencies of this range, the sampling rate
is set to 1 MHz allowing the system to observe EM signals
from 0 ∼ 500 kHz. Figure 2 panel A, shows a smartphone
being scanned. An antenna consisting of an electrically short
monopole is used to capture the EMI signals, which are fed
to the modified RTL-SDR, and then processed by a host PC.

B. EM-ID Extraction

Once the EMI signal is digitized and sent to the host PC,
it is converted to the frequency domain as shown in figure
2, panel B. In order to extract an EM-ID from the raw FFT
data the low magnitude noise must be removed. This is done
by setting a threshold, which is 1% higher then the difference
between the peak and average signal magnitude: Threshold =
(peak−mean) ·1%+mean). Data points above the threshold
are stored in an array of frequency and magnitude pairs that
represents the EM-ID of the device, as shown in figure 2, panel
C. While the number of frequency peaks is dependent on the



device type, typical EM-IDs have a length of 1,000 to 2,000
elements.

Once the EM-ID of a device has been recorded it can be
stored in a central database along with other asset management
information such as asset number, manufacturer, model, owner,
etc. Since an EM-ID is based on random variations in the
manufacturing of the electronic device it cannot be known
a priori. Thus each device must be registered in a database,
which is a typical process for most RFID applications.

C. Category Classification and Device Identification

As with all RFID systems, the ID number is simply a
means of linking a physical object to a database of attributes,
or to trigger an event/action. Since the EM-ID cannot store
custom user information, the challenge is to link the EM-ID
of a unknown scanned object to the correct entry stored in
the database of EM-IDs. The process of quickly searching a
database is more complicated for EME based identification
since the EM-ID is an emergent statistical property of the
system rather then a digitally stored ID number.

As will be described in detail in section IV the EM-ID is
the result of a probability distribution. While it will be shown
that the probability distribution from one device to the next
is indeed unique and non-overlapping (and thus sufficient for
identification), for the purpose of this system overview it is
important to remember that from one read to the next there
may be a small perturbation in a device’s EM-ID. Therefore,
to uniquely identify an individual device (that exists in the
database) there is a two-stage ranking process starting with
category classification and then device identification.

The goal of the category classification stage is to determine
what type of device the unknown object is, thereby greatly
reducing the search space for the identification stage. As
described in Laput et. al. [7] category classification based on
support vector machines (SVM) can be done robustly across
a wide variety of devices. In this paper, we implemented a
ranking system based on the cosine similarity function, which
greatly reduces the computation complexity and eliminates
the need for training. As shown in figure 2, panel D, the
frequency components of the EM-ID of the unknown iPhone
6, is compared to examples of each of the subcategories. The
results are ranked and the high matching categories are flag
for further examination in the device identification stage.

To give some intuition into the effectiveness of this approach
figure 3 shows the frequency distribution of five example
devices (MacBook Pro, toy lightsaber, florescent lightbulb,
LCD Screen, and an iPhone 6). Visually, it is easy to see that
the spikes along the 500kHz frequency range are identifiable
and unique to each object. Once this data is thresholded,
the resulting frequency and magnitude pairs are recorded and
robust similarity scoring can be done.

The final stage of the process is device identification which
is depicted in figure 2, panel E. Here the goal is to disam-
biguate one device from others of the same type and model;
for instance one iPhone 6 from a population of iPhone 6s. This
is a much more challenging task, as the frequency distribution
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Fig. 3. Representative frequency domain plots from 0 to 500kHz of the EM
signals from five different categories of devices. The distinctive patterns are a
manifestation of the circuit topology and are unique to each device category.

will have a much higher likelihood of overlapping. As will
be described in detail in section IV, both the frequency and
magnitude components of the EM-ID will be used along
with the cosine similarity function to uniquely determine the
identity of the unknown objects.

III. MITIGATING EM-ID READER VARIATIONS

As with all radio receivers, different EM-ID readers have
variations in signal sensitivity as well as different local oscil-
lator precisions and offsets. Even when using the same EM-ID
reader to rescan a given device, variations in reader antenna
placement and distance can result in differences in the absolute
magnitude of the EM signal. These variations can result in
measurement uncertainty in both frequency and magnitude.
The following section presents methods for mitigating these
issues, thus allowing multiple EM-ID readers to be used
interchangeably.

A. Frequency Uncertainty

Since the local oscillator (LO) on the EM-ID reader is used
as a reference to measure the frequency components of the
received electromagnetic emissions from the device under test,
variations in the LO over time or from reader to reader, will
result in mis-measured frequencies. For example, in this work,
the EME signals are sampled at a rate of 1 MHz and an FFT
window size of 217 is used when converting from the time
domain to the frequency domain. This results in a frequency
resolution (or frequency bin width) of 7 Hz. However, the
local oscillator used on the RTL-SDR has an accuracy of only
10 PPM (parts per million) and at 1MHz this results in an
uncertainty of 10 Hz. Thus, it is possible that a signal source of
100 Hz will be measured by one reader at 110 Hz and another
reader at 90 Hz, resulting in a mismatch between the respective
frequency indexes in the recorded EM-ID. While changing
system parameters such as FFT window size, sampling rate,
and oscillator accuracy can improve the system, the underlying
problem still exists. In typical radio systems this issue is
overcome by having the transmitter send a pilot tone that the
receiver’s Phase Lock Loop can lock on to. However, no such
signal exists for an EM-ID reader due to the emergent nature
of EMI signals.



To mitigate the LO issue, a pseudo pilot tone approach
is used where the frequency component with the maximum
signal strength of the first EM-ID is used to align to the second
EM-ID. Since the amount of frequency uncertainty is known,
only peaks that are within +/-10 Hz are used for alignment,
thus greatly reducing false matches for unrelated frequency
spikes. For example, consider an EM signal which has multiple
tones scattered over the frequency spectrum, two different
EM-ID readers may measure the strongest frequency tone
differently at 100 Hz and 110 Hz. The frequency compensation
algorithm can shift all the 110Hz data by a -10 Hz offset.
Therefore, after frequency offset compensation, two different
measurements reach a consensus in terms of frequency mea-
surements such that later their similarity can be evaluated.

B. Magnitude Uncertainty

The magnitude of recorded EM signals can very signifi-
cantly based on the EM-ID reader’s sensitivity and the distance
and placement of the reader antenna to the device under test.
To deal with this issue, the signals are normalized to a unit
vector for similarity evaluation in later sections. Generally
speaking, measurements can be taken robustly without the
user worrying about aligning the antenna as long as it is
touching or is tapped on the object of interest. For instance
when scanning an iPhone, it simply needs to be placed on
the reader. Alternatively when scanning a MacBook Pro track
pad, the EM-ID reader antenna should touch the pad and not
the LCD screen, as that would be a different measurement.
This does make the reasonable assumption that there is not
significant frequency dependent attenuation caused by user
antenna placement or drifts in the analog front end of the
reader.

IV. FINE-GRAINED CLASSIFIER FOR SIMILARITY
MEASURES

Similarity measures between datasets have been studied in
several fields [10]. These techniques include Euclidian dis-
tance, cosine similarity and relative entropy – these approaches
quantify the similarity of two vectors in high dimensional data
space [11], [12]. For example, cosine similarity computes the
score between two vectors [13], [14]; the higher the score of
cosine similarity, the more similar the datasets. In this section,
a two stage cosine similarity algorithm is used to first classify
the category of an unknown device and then determine its true
identity by correctly determining which entry in the EM-ID
database it belongs to.

A. Cosine Similarity

Cosine similarity gives a score based on the similarity of two
vectors in higher dimensional space. Consider a time series
EM signal x = [x1, x2, x3, ..., xn] sensed by an EM-ID reader.
The frequency transform of this EM signal is X =F{x} and
represents the EM signal’s frequency distribution. The vector
X=[X1, X2, X3, ..., XN ] represents the EM signal data in the
frequency domain where each element Xi (0 ≤ i ≤ N )
refers to the signal strength at the ith frequency bin. Similarly,

another unknown EM signal after frequency transformation is
Y. By viewing each EM signal X and Y as n-dimensional
vectors, the cosine similarity yields a score calculated by:

C.S.(X,Y) :=
X ·Y
‖X‖ ‖Y‖

=

N∑
i=1

XiYi√
N∑
i=1

X2
i

√
N∑
i=1

Y 2
i

(1)

A high value of cosine similarity corresponds to two similar
datasets. Since each element Xi and Yi for 0 ≤ i ≤ N
represents absolute magnitude, the values Xi and Yi are always
positive – this results in a cosine similarity range between
0 to 1. A similarity score of 0 implies two vectors are
orthogonal to each other, while a score of 1 indicates the two
vectors are identical. Given two known EM signals X and Y
obtained from an electronic object “E” and “G” respectively,
and an unknown EM signal X′, using cosine similarity we
can identify which object the unknown vectors corresponds
to. If C.S.(X,X′) > C.S.(Y,X′), then the cosine similarity
indicates the unknown EM signal X ′ is from the same source
as X . Hence, the result identifies the unknown signal X′

as the electronic object “E”. Similarly, if C.S.(X,X′) <
C.S.(Y,X′), the unknown EM signal X′ is identified as the
electronic object “G”.

1) Gain difference vs. Similarity: Equation (1) implies that
all gain differences can be mitigated because each vector X
and Y are normalized by their total energy ‖X‖ and ‖Y‖
respectively. To illustrate this concept, consider a time series
EM signal x′ that has α times more gain than x (x′ = αx).
By applying the fact that the same gain exists in the frequency
domain as X′ = αX, the cosine similarity can be obtained by

C.S.(X′,Y) :=
X′ ·Y
‖X′‖ ‖Y‖

=
αX ·Y

α ‖X‖ ‖Y‖
= C.S.(X,Y)

(2)

Equation (2) indicates that the signal strength, in terms
of gain coefficient, will be normalized through the cosine
similarity calculation. Thus, once the EM signals for given
devices are established in a database, the cosine similarity can
evaluate each new unknown EM signals even when measured
in different positions and orientations, or by different EM-ID
readers.

B. Category Classification

When EM signals are from different device categories, most
of their frequency bins do not overlap. This can be seen in
figure 3, where the Macbook Pro trackpad, lightsaber, flores-
cent lightbulb, LCD screen, and iPhone 6 have completely
different frequency distributions. Since their internal circuit
structures are completely different, different categories have
no or few common frequency bins. When two vectors have
no common frequency bins, the cosine similarity returns to
zero. For example, two EM signals from different categories
with frequency distribution X = [X1, X2, X3, 0, 0, ..., 0] and
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Fig. 4. Frequency domain plots from 0 to 500kHz of the EM signals for five
identical toy lightsabers. Since the same circuit is used in each device the
frequency distributions are similar to each other, although close inspection
shows that indeed there are small differences.

Y = [0, 0, 0, Y1, Y2, Y3, 0, 0..., 0] have zero scores. If EM sig-
nal vectors are from different objects but are within the same
category, their frequency distributions usually have a higher
fraction of common frequency bins because of their similar
circuitry. The lighsaber example shown in figure 4 yields
a very similar frequency distribution and a higher fraction
of overlapping frequencies. Consider two EM signal vectors
from the same categories as X = [X1, X2, X3, 0, 0, ..., 0]
and Y = [0, Y1, Y2, Y3, 0, 0, ..., 0], their cosine similarity is
X2Y1+X3Y2

‖X‖‖Y‖ and returns a non-zero score. As a result, different
objects within the same category can have a higher cosine
similarity than objects from different categories. By leveraging
this property, we can first identify the class of device by using
a known vector for each category. For example, comparing
an EM signal of an unknown device to representative EM-ID
vectors from each category of devices in the database will
result in a set of similarity scores. The highest score will
correspond to the category of the unknown device which can
then be used to narrow the search space when determining the
identity of the object among objects of the same category and
model in the database.

C. Fine-grained Identification

Once the class of a device is determined, it is then compared
to all known objects in the database of the same class using the
cosine similarity function to determine its identity. The highest
score is used to return the object’s true ID. For example, an
unknown object is first compared to one representative of each
device class in the EM-ID database. If the highest scoring EM-
ID vector is the lightsaber class then the unknown devices
is compared to all lightsabers in the EM-ID database. The
system will then return the ID of the lightsaber with the highest
probability match based on the cosine similarity function.

V. PREDICTING IDENTIFICATION SUCCESS RATE

Since the electromagnetic emissions from electronic devices
are an emergent property of the system and not specifically
designed to be unique, there is the possibility that the EM
emission spectrums of closely related devices will overlap
causing identification errors. To investigate this issue we
employ the Euclidean distance function [15] to analyze a large

population of EM signatures for a set of devices, and then
by modeling them as a Gaussian distribution we are able to
calculate the probability of successfully identifying a given
device.

A. Performance Analysis via Euclidean distance

When comparing two vectors the Euclidean distance func-
tion computes the same information as the cosine similarity
function but its output is a linear vector rather then angle which
makes it more applicable for plotting and manipulating prob-
ability distributions. Given two EM-IDs represented by an n
dimensional vector of frequency and magnitude pairs (X,Y).
The Euclidean distance can be calculated by first taking the
unit vector of each ux= X

‖X‖ , uy= Y
‖Y‖ and then calculating

the distance between them d(ux,uy) = ‖uy − ux‖. Smaller
values of d(ux,uy) represent EM-ID vectors that are closely
aligned, while larger distance numbers indicate vectors that
are dissimilar.

We now return to the previous example of five identical toy
lightsabers as shown in figure 4 which consists of five known
EM signals A, B, C, D and E. With the goal of showing how
robustly lightsaber A can be identified out of the population of
five devices; 300 scans of test data are taken of lightsaber A
and denoted by Âi where i = 1, 2, ..., k represents each trial.
Computing the Euclidean distance of all 300 trials of Âi across
the five known elements in the data base (A, B, C, D and E)
results in 1,500 similarity measurements. These measurements
are then normalized and plotted as the probability histogram
depicted in figure 5. For instance the red block of histogram
data shows all 300 distance measurements between lightsaber
Âi and A (i.e. measurements against itself). As expected the
distance between the test data Âi and A is smaller then the
distances reported for the other lightsaber, B maroon, C green,
D blue and E khaki. Furthermore since the red histogram for
A does not overlap with any of the other lightsabers this shows
that it is sufficiently unique, compared to its peers, such that
it can be robustly identified without errors.

While the toy lightsaber is an example of a class of devices
where it is easy to identify individual instances of the given
device this is not always the case. As can be seen in figure 6,
which shows a histogram of the measured Euclidean distance
of five identical Apple Macbook Pros. As in the previous
example 300 test scans of Macbook Pro B’s trackpad (B̂i) was
scanned and the Euclidean distance between it and each of the
five Macbook Pros in the database (A, B, C, D and E) are
calculated and plotted resulting in 1,500 data points. Ideally,
MacBook Pro B (shown as a green histogram) should have
the smallest distance when compared to others four MacBook
Pros. However, some of MacBook Pro’s E histogram (shown
in khaki) overlaps with the MacBook Pro B which results
in an increased probability of identification errors. These two
examples show that the higher the degree of overlap of the
histogram (i.e. the higher the similarity between devices) the
higher the probability of classification and identification errors.
Likewise if the histograms do not overlap and have wide
margins the probability of errors is quite low.
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lightsaber Âi and the five known lightsabers A, B, C, D and E who’s
EM-IDs are stored in a database. In these example lightsaber A is correctly
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B. Gaussian Distribution Prediction

This section describes a method for quantifying the prob-
ability of successfully identifying a device based on the
distribution of Euclidean distances. By modeling the histogram
of distance data as a Gaussian distribution, as shown in figure
5 and 6, the statistical information of all Euclidean distances
can be used to predict the systems ability to correctly identify
objects based on their EM signal from a database of EM-
IDs. Consider µS and σS , which are the mean and standard
deviation of all distances from the same electronic device
d(ux,ux′i

), while µD and σD are the mean and standard
deviation for all distances from different devices but within
the same category d(ux′i

,uy). The probability of success can
be computed as:

PS = Prob.[ d(ux,ux′i
) < d(uy,ux′i

) ] (3)

Equation 3 presents the probability of success by finding all
distances from the same device that are smaller than those
from different devices. Therefore, once µS , σS , µD and σD
are obtained, the success rate PS can be calculated through
the Gaussian distribution model for each electronic device as:

PS =

∫ ∞
−∞

∫ ∞
x

1

σSσD2π
e
− (x−µS)2

2σ2
S e

− (y−µD)2

2σ2
D dxdy (4)

≈
∫ µS+3σS

µS−3σS

∫ µD+3σD

x

1

σSσD2π
e
− (x−µS)2

2σ2
S

− (y−µD)2

2σ2
D dxdy

Figure 7 illustrates the probability of accurately classifying
an unknown device when the database contains overlapping
Gaussian probability distributions. The blue curve represents
the d(ux′i

,ux) distribution while the brown curve represents
the d(ux′i

,uy). The area shaded in blue indicates a True
Positive identification, where an unknown device is correctly
classified as matching the test vector stored in the database.
The area shaded in brown indicates a True Negative iden-
tification, where an unknown device is correctly classified
as not matching the test vector stored in the database. The
region of space the falls under both the blue and brown
curves that is shaded in red is a concatenation of the False
Negative and False Positive identification, and represents an
error. Thus the more the two Gaussian distributions overlap,
and the larger the red region, the higher the probability of
miss classifying the unknown device. Therefore to calculate
the probability of successfully classifying an unknown device,
one must calculate the area of the blue and brown shaded
regions using equation 4.

Since 99.73% of the Gaussian distribution area is within
3 standard deviations of distance, the integration area can
be reduced to obtain the approximate probability of success.
Thus, this leads to one important result: a 100% success
rate, or an error-free identification, must have the following
property:

ErrorFree : (µD − µS) > 3× (σD + σS) (5)

To achieve error free identification as defined in 5, the
relative distance of the mean between the blue and brown
curves must be more than 3 total sigma (σD +σS). This
property can be used to predict why the lightsaber is error
free while the Macbook Pro trackpad’s EM signals have some
identification failures. As will be shown in the results section,
the equality (µD − µS) > (3 × (σD + σS)) is true for the
lightsaber category, but not the Macbook Pro category.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE

In order to evaluate the effectiveness of the proposed
EM based identification system both category and individual
device identification has been tested. Additionally the success
rate prediction algorithm is also used to estimate performance
which is then compared to measured results.



Fig. 9. Confusion matrices showing the likely hood that a particular device can be positively identified out of a population of devices of the same model.
Note that the column denoted PS next to each matrix shows the predicted success rate of identifying each individual device.

Fig. 7. The successful rate of identification can be estimated through the
integral of true positive and true negative.

For testing, five different categories of electronic devices
were chosen ranging from simple toys to laptop computers. For
each device type identical versions of the same model were
used for testing the system’s ability to disambiguate similar

Fig. 8. Confusion matrix for category classification, showing that the
EM-ID algorithm can reliably determine device type based solely on its
electromagnetic emissions.

electronic devices. A total of 40 devices were tested including:
5x General Electric fluorescent tube light bulb (Model: GE-
F54W), 5x Hasbro lightsaber toy (Model: A4571), 20x Dell
LCD 24 inch screen (Model: U2413F), 5x Apple iPhone 6
(Model: A1549), and 5x Macbook Pro Retina Mid-2014. For
both the iPhone 6 and Dell LCD screens the same image
was displayed on each of the five respective units during EM
measurements. For the five Macbook Pros the trackpad was
scanned with the EM-ID reader, although other parts of the
laptop such as the screen and keyboards could also be used
as a secondary measurement for redundancy.

To generate the EM-ID database each of the 40 devices
was scanned once and their respective EM-IDs where stored.
To show that the EM emissions from these devices are stable
and persistent overtime the EM-ID database was collected on
October 27, 2015 and the testing was conducted five months
later on March 14, 2016. In order to show the reliability of
the EM-ID system to both determine a device’s category and
its individual identity, each of the 40 devices was scanned 30
times and compared to EM-IDs in the database, resulting in
1,200 total trials.

The results from category testing are shown in figure 8. In
order to reduce computational complexity only one EM-ID
from each of the five categories was used for comparison. For
example when testing an unknown device, only one device
from each category was needed for comparison. Results show
that the cosine similarity function produced robust category
classification accuracy across the 1,200 trials with a total
accuracy of 100%.

Once an unknown device’s category has been determined
the second, and more challenging, task is to determine which
of the five devices of the same model it corresponds to. Again,
the cosine similarity function is used to determine the degree
to which the EM-ID candidate vectors are aligned and the



one with the highest score is chosen as a match. Results are
shown in the five confusion matrices in figure 9. Five identical
models of the lightsaber, MacBook Pro, florescent lightbulb,
and iPhone 6 were each tested for 30 trials. For the Hasbro
Lightsaber the identification algorithm perfectly identified the
individual device 30 times (i.e. Lightsaber A was correctly
identified as Lightsaber A). The five MacBook Pros had an
average identification accuracy of 94.6% and the GE florescent
lightbulb had an average accuracy of 86%. Fortunately, 20
units of the Dell LCD screen was available for testing and
each unit was scanned 30 times. The results shows and average
identification accuracy of 94.7%.

The results for the iPhone 6 are less reliable with an average
accuracy of 71.2%. This is primarily due to iPhone “C” being
completely miss-categorized as iPhone “B”. As described in
the text since the electromagnetic emissions generated by a
device are an emergent property it is not possible to ensure
that EM-IDs are always unique and never collide. Fortunately
the algorithm for Predicting the Identification Success Rate
(presented in section V was able to accurately predict these
failures. This is shown in the columns labeled PS next to
the confusion matrices shown in figure 9, which accurately
predicts the success rate. This is an important result since the
success rate prediction PS was made based only on the original
EM-ID database created in October. Thus when a user enters a
device into the database the success rate prediction algorithm
can be run and can alert the user if the new device is unique
enough to be read or if an alternate strategy is needed.

Error free identification performance can be predicted by
using the Euclidian distance information in Table I, which list
each categories average distance and standard deviation. For
instance, for the lightsaber µD - µS = 2.69 × 10−3 while
3× (σD +σS) = 1.098× 10−3. Thus by using the criteria for
error free identification performance defined in equation (5),
the lightsabers satisfies the equality µD - µS > 3× (σD+σS)
such that it has error free identification performance.

TABLE I
AVERAGE EUCLIDEAN DISTANCE FOR EACH CATEGORY: (UNIT:10−3)

Category iPhone6 MBPR Screen Lightsaber Lights
Avg:µS 3.341 8.521 5.72 3.703 32.173
σS 0.33 0.2356 0.483 0.253 1.867

Avg:µD 3.452 10.571 8.124 6.393 33.406
σD 0.324 0.3325 0.351 0.113 1.763

VII. CONCLUSION

This paper proposes a method for individually identifying
electronic devices, without the need to add bar codes are RFID
tags, simply by measuring the electromagnetic noise they
generate when powered on. These electromagnetic emissions
are captured using a low cost (∼$10) hand held reader and
can reliably extract the EM-ID of the device under test.

This work presents a new computationally lightweight al-
gorithm that can determine the similarity in the EM-IDs
of devices and shows an increase in category classification
accuracy over previous work. More importantly for the first

time, this work tackles the more challenging task of individ-
ually identifying an unknown device out of a population of
the same model. Testing was done on electronic devices as
simple as a light saber toy and as complex as a smart phone
with identification accuracy ranging from 100% to 71.2%
respectively.

While not all classes of electronic devices are guaranteed
to be individually identifiable the success rate prediction
algorithm presented here can accurately predict the likelihood
that a device can be identified out of a population of the same
model. Ultimately the signal processing and mathematical
frame work established here, lays the foundation for utilizing
electromagnetic emissions for identification purposes.
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