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ABSTRACT
RFID sensor networks perpetually stream sensor data without
batteries. Cameras are power hungry but provide richer infor-
mation than conventional sensor network nodes. Battery-free,
RF-powered camera sensor nodes combine many of the at-
tractive features of RFID sensor networks with those of cam-
eras. However, prior battery-free cameras have no notion of
3D location, which is desirable for creating large scale net-
works of battery free cameras.

In this work we propose using battery-free RFID sensor tags
enhanced with on-board cameras to enable a network of dis-
tributed tags to optically determine the 3D location and pose
of each camera tag given known reference tags enhanced with
LEDs. Experimental results show that the camera tags are
capable of determining their position with an average accu-
racy of [x, y, z] = [15.92cm, 4.39cm, 1.03cm] at an LEDs-
to-Camera range within 3.6m.
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INTRODUCTION
RFID sensor networks offer the potential for densely dis-
tributed sensing that inherits the attractive features of RFID:
battery-free operation, low cost (∼10 cents), a small sticker
form factor, and an operating range of over 10 meters from
the reader. Ongoing research has focused on adding sensing
capabilities to these tags to enable applications such as human
object interaction detection, activity inference, and streaming
of sensor data [1, 6, 9, 10].

Previous work [5] introduced WISPCam, a passive (i.e.
battery-free) RFID tag with a camera sensor, which is able
to capture images without the limitations of batteries, excess
wiring, or complex installation. This new device is a small,
cheap, low-power and, due to its battery-free nature, ubiqui-
tous device.
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To take full advantage of a distributed network of RFID sen-
sor tags it is desirable for each tag to know its location and
pose so that it can make intelligent decisions regarding sen-
sor choice and usage, data interpretation, and aggregation of
results for transmission back to the RFID reader. However,
existing methods for passive RFID localization based on RF
signal strength and/or phase, which are suitable for uncon-
trolled and unstructured environments, have an accuracy of
approximately a meter or require a large number of reference
tags and significant computational overhead [11]. Alternative
methods of tag localization employ ultra-sound sensors for
time of flight distance measurement [12] or use RFID tags
enhanced with LEDs which allow powered cameras to local-
ize the tags in 3D space. [9].

In this paper we propose a method to turn WISPCams [5]
into a smart camera network that can efficiently and precisely
localize each camera optically without the need for extra cir-
cuitry or components. We show that WISPCam is capable of
obtaining its location and orientation relative to other WISPs
enhanced with LEDs. Ultimately this technique can be ex-
panded to a network of hundreds of WISPCams that work to-
gether to measure their location with optical cues or localize
and track objects of interest in 3D.

Contributions. This paper makes two primary contributions:
(1) we design and implement a network of WISPCams that
can precisely localize themselves using their on-board cam-
eras. For example, this allows users to query a network of
cameras for all images facing “north”, as opposed to requiring
all cameras to upload their images and discarding unneeded
ones after post processing. (2) we propose and implement
a procedure leveraging on-board computation to significantly
reduce the amount of data required to be transmitted from
WISPCam to an RFID reader in order to greatly speed up the
process of optical localization.

SYSTEM OVERVIEW
The task of localizing a camera based on a captured image is
accomplished by identifying known points or objects in the
picture. The correspondences between known 3D reference
points and their 2D image projections are exploited in or-
der to compute the Euclidean transformation (pose) between
the camera and reference points. This is referred to as the
Perspective-n-Point problem and also requires that the intrin-
sic parameters of the camera are known [4]. In this work, we
use LED WISP as a reference object with four LEDs arranged
in known locations on a plane. The detected pixel coordinates
of LEDs are used to establish the 3D pose of WISPCam.

PnP image processing can be done quickly on a PC but is im-
practical to run entirely on a performance limited, battery-free



Figure 1: Prototyped WISPCam hardware

RFID tag. Conversely, transmitting the entire raw captured
image over the air via the EPC Gen2 Class1 RFID protocol to
a PC for post processing is not practical: We performed an ex-
periment to evaluate the communication throughput of a sin-
gle WISPCam in an RFID environment. The WISPCam was
programmed to capture a 140×144 gray scale image (20,160
bytes) and transmit it back to an RFID reader with a tag-to-
reader link frequency of 160kHz. In the best case scenario,
where the WISPCam is externally powered, the transmission
process takes 8.5 seconds on average. Assuming a network
with 10,000 WISPCam’s, the time required for all tags to
transmit their raw images would take approximately 24 hours.
Furthermore, the additional time required for the WISPCam
to harvest sufficient RF power for camera operation also sig-
nificantly impacts the overall throughput. Thus, optical lo-
calization processing done solely on the PC side quickly be-
comes unfeasible. Our approach is to split processing; we
perform simple image processing on the tag itself to transmit
only relevant image features in order to reduce data commu-
nication as much as possible. Details are given below.

WISPCam
The image sensor used on the WISPCam is an Omnivision
OV7670 VGA CMOS image sensor. Prior battery-free RFID
sensors require tens of microjoules of energy to sense and
transmit just a few bytes of data, whereas the WISPCam
needs tens of millijoules of energy to capture and transmit
an image (tens of kilobytes of data). Generally speaking, the
WISPCam has been designed to be a battery free platform
that can handle large workloads in terms of sensing, computa-
tion, and communication. The WISPCam takes advantage of
an onboard microcontroller with 64KB of non-volatile low-
power high-speed memory (FRAM) to capture the images via
DMA at 48Mbps while consuming low-power. FRAM allows
image data to be retained when the system loses power. To
harvest sufficient energy, the WISPCam uses a 15mF super-
capacitor and an efficient power harvester. Finally, the WISP-
Cam implements the RFID EPC Gen 2 Class 1 protocol in its
firmware, which enables it to communicate with off-the-shelf
RFID readers using a backscatter technique. The prototyped
hardware is shown in Figure 1.

In this work, we use another battery-free software defined
RFID tag with 4 LEDs placed in a known location as a refer-
ence frame. Unlike the WISPCam, this tag (referred to as the
LED WISP below) has neither a camera nor communicates
directly with the RFID reader. The main role of the LED
WISP is to synchronize itself with the WISPCam so that the
reference LEDs are off when the WISPCam takes the first

(a) Captured foreground (b) Difference image

Figure 2: WISPCam background/foreground image capture
and subtraction

Figure 3: synchronization and image capturing diagram

reference image and then strobes the LEDs on when the the
WISPCam takes the “blink” image.

LED WISP

FIRMWARE AND SOFTWARE DESIGN
As mentioned above, transmitting tens of kilobytes of raw im-
age over the RFID link is not feasible in real time. In addition,
it is probable that pixel data will be lost during transmission
since the RFID EPC Gen2 Class1 is not a loss-less communi-
cation protocol, as it was designed for inventory purposes, not
streaming sensor data. Our approach to overcome this com-
putation/communication trade-off is to perform simple image
processing on the WISPCam to minimize data transfer to an
RFID reader. Two back-to-back image frames are captured
33.4ms apart. The first picture is captured while all refer-
ence LEDs are off (reference image) and the second image
is captured while all LEDs are on (blink image). Then the
WISPCam differences these two images and the result is an
image with 4 LED pixels highlighted. Figure 2(a) shows an
example picture captured by a WISPCam while LEDs are on,
and Figure 2(b) shows the difference image computed on the
WISPCam. Sub-pixel position for each LED is computed by



a weighted average over the intensities of pixels adjacent to
detected LED pixels. Now, only 12 bytes (4 pairs of 3 bytes
– 12 bits each for x and y) representing the 2D image coordi-
nates of the detected LEDs need to be transmitted to the PC
host for processing, a 1,680 fold data reduction.

Simultaneously, the LED WISP is synchronized with the
WISPCam and is initially placed into a low power sleep mode
ensuring LEDs are off when the WISPCam captures the ref-
erence image. In order to synchronize with image capture,
the LED WISP sniffs the RFID communication between the
WISPCam and the RFID reader and listens for a special in-
ventory command sent by the reader to the WISPCam. Next,
the WISPCam transmits its ID to the reader and starts captur-
ing background and foreground images. Figure 3 shows the
synchronization process and details can be found in [12, 13].
The camera exposure starting time and duration are known to
the system, so the LED WISP turns on the LEDs for 20ms
at 1.3mA, guaranteeing that the LEDs are only active while
the WISPCam exposes the blink image. This duration and
current are empirically set to minimize the LED WISP power
consumption as well as experimental errors in detecting the
LEDs at farther ranges.

Pose Estimation
A Python program running on the host computer communi-
cates with a commercial RFID reader via SLLRP [8], and
estimates the 3D pose of the WISPCam using LED location
coordinates xi ∈ R2 provided by the WISPCam.

As mentioned above, the pose is computed using the PnP al-
gorithm, P4P in our case, for 4 planar convex and rotationally
asymmetric scene points wi ∈ R3 with known positions in a
local coordinate frame. The PnP pose is only relative to the
local frame of the scene points, and not to any global frame.
Without loss of generality, we set the origin of this local frame
in the center of the points wi such that their z-coordinate is 0
and the positive z-axis is normal to the points’ plane, and use
it as our global frame of reference.

Although PnP requires at least 3 points for a solution, for cer-
tain poses and point configurations, 3 points will return up
to 4 valid solutions [3]. In general, the PnP solution is am-
biguous for n < 6, however 4 planar points can conceptu-
ally be partitioned into 4 groups of 3 points to give sufficient
constraints for multiple application of P3P. Further, planarity
preserves convexity under perspective transformations (up to
resolution quantization); in contrast, 4 points in general posi-
tion can be self occluding due to parallax. Rotational asym-
metry ensures a unique solution for the estimated pose orien-
tation. However, with a planar scene the P4P solution could
lie on either side of the plane. In this case we simply in-
vert the z-coordinate (normal to the plane) of the solution if
it is negative, knowing the scene is not visible from behind.
We used the PnP implementation provided by OpenCV [2],
which provides a high quality iterative solution.

PnP requires knowing the correspondences between 2D and
3D points. With only 4 points of interest, we find the correct
correspondence with brute force. We compute a P4P pose
solution for each of the 4! = 24 possible correspondence per-

Figure 4: WISPCam experimental setup

mutations between the image and scene points, and choose
the one which minimizes the reprojection error. Reprojection
error is computed as

ε(P ) =

4∑
i=1

||Pinhole(wPi,Ω,Λ, τ)− xi| |2

where P is a permutation of {1, 2, 3, 4}, Pinhole : R3 → R2

is a pinhole camera projection model whose parameters are
Ω: the calibrated camera intrinsics, Λ: camera orientation,
and τ : camera position [7]. In our tests the reprojection error
for the best permutation P ∗ = argminP ε(P ) (giving the cor-
rect correspondence) was at least one order of magnitude less
than the next highest ε.

EXPERIMENTS AND PERFORMANCE
Two experiments are performed to evaluate our proposed sys-
tem. The first experiment evaluates localization accuracy
for an experimental setup containing a single WISPCam.
The second experiment illustrates our system employed in
an RFID network which contains three WISPCam’s and one
RFID reader. Both experiments were conducted in a lab with
typical indoor light levels. Finally, an application of self-
localized cameras in a dense environment is presented.

In the first experiment, an Impinj R1000 RFID reader is used
to transmit 1W of RF power through a 6dBi patch antenna.
The LED WISP is placed on a 22.5cm×22.5cm upright plane
(the same size as an RFID antenna) and its LEDs form an
asymmetrical quadrilateral shape (see Figure 4).

The maximum range that the WISPCam and LED WISP can
harvest energy from RF power is around 5 meters from the
RFID antenna, however the low resolution of the captured
image makes the LED blinks indistinguishable from noise be-
yond 3.6 meters. In our experiments we pointed the camera
towards the LED WISP to ensure the LEDs are in the field of
view of each WISPCam.

The WISPCam is placed in 6 different locations within view
of the LED plane, and the LED pixel coordinates are reported



back to RFID reader by the WISPCam. Localization perfor-
mance is reflected in Table 1.

Measured position PnP difference Error ratio
[x,y,z]cm [x,y,z]cm [x,y,z]

[-8.25, 3.17, 365.76] [8.77, 8.51, 3.24] [2.40%, 2.33%, 0.89%]
[-8.89, 4.44, 335.28] [27.99, 8.67, 1.27] [8.35%, 2.58%, 0.38%]
[-13.97, 3.81, 274.32] [35.84, 3.57, 0.71] [13.05%, 1.30%, 0.26%]
[-14.99, 3.81, 213.36] [13.66, 3.12, 0.08] [6.39%, 1.46%, 0.04%]
[-16.51, 4.44, 152.40] [5.73, 1.46, 0.43] [3.73%, 0.95%, 0.28%]
[-19.05, 3.81, 121.92] [3.51, 1.02, 0.46] [2.85%, 0.83%, 0.37%]

Table 1: Experimental results. Measured position is our best-
attempt at a ground truth. PnP difference is the absolute per-
axis difference of the PnP pose estimate from the measured
position. Difference ratio is the PnP difference divided by the
length of the vector of measured position. Trials are sorted by
descending distance.

Performance Analysis
Table 1 shows our location estimation result. The average
error-to-distance ratio is [6.13%, 1.57%, 0.37%](x, y, z). The
higher relative accuracy on the z-axis compared to the x and
y-axes is a factor of WISPCam having a narrow field of view
and being located along the scene’s z-axis while taking mea-
surements. Small perturbations in perceived LED pixel image
coordinates result in relatively large changes in x and y-axis
coordinates lying in a plane perpendicular to the z-axis. This
effect is a combination of 1) low field of view means the LED
pixels do not have much angular separation, and 2) there is
no foreshortening effect of the pixels since the image plane is
tangent to the LED plane, and the result is that the geomet-
ric constraints imposed by the projective geometry, which are
used to calculate pose, are weaker relative to measurement
noise. This sensitivity effect applies anytime the WISPCam
lies near a scene axis, so we show an estimate of both the
upper and lower accuracies obtainable using the WISPCam.

Network of Self Localizing Cameras
In the second experiment we placed three WISPCams in dif-
ferent arbitrary locations such that the LED WISP falls in
their field of view. Figure 5 shows our experiment setup, the
cameras (marked 1-3) and their views. The LED WISP and
WISPCams are are wirelessly powered with the same setting
as the previous experiment. After each WISPCam is localized
with the method presented in this paper, each WISPCam can
be singly queried by its location. In figure 5 the three differ-
ent pictures captured by three WISPCam’s after localization
phase are shown. This system can be used to obtain cam-
era locations during setup or at run-time, and allows intelli-
gently commanding any WISPCam in the network to capture
an (high resolution) image of a particular region or zone in
the environment based on criteria such as direction of view.

CONCLUSION AND FUTURE WORK
This paper demonstrates a method of self-localizing battery-
free RFID cameras using a passive reference tag enhanced
with LEDs, and a single RFID reader. The system proved to
have an average accuracy of [x, y, z] = [15.92, 4.39, 1.03]cm

Figure 5: The network of WISP-Cam

over a 3.6m range for camera location estimation. WISPCam
is designed to enable a ubiquitous computing, sensing and
communication platform for large computational workloads.
In our project, we turned WISPCam into a smart and opti-
cally self-localizable battery-free camera that reduces RFID
communication channel occupancy by a factor of 1,680 dur-
ing the localization phase at the expense of performing some
amount of computation on-board.

Future work will involve using a 3mm3 VGA camera on
WISPCam (OVM7690) which will give us a larger field of
view (about 60 degrees compared to 40 degrees in the current
prototype), as well as a significant size reduction. We will
improve the pose estimation accuracy using dynamic high-
resolution regions of interest around detected LED regions
and better account for quantization effects due to Bayer fil-
tering. We will also extend this project by applying it in
larger networks to localize other nodes and objects using
previously-localized battery-free cameras and objects’ opti-
cal cues, or even to build a 3D model of an environment.
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