
WINDWare: Supporting Ubiquitous Computing with
Passive Sensor Enabled RFID

Asanga Wickramasinghe, Damith C. Ranasinghe
Auto-ID Lab,

The University of Adelaide, Adelaide SA 5005, Australia
Email:{asanga.wickramasinghe, damith.ranasinghe}@adelaide.edu.au

Alanson P. Sample
Disney Research, 4720 Forbes Avenue,
Suite 110, Pittsburgh, PA 15213, USA

Email:alanson.sample@disneyresearch.com

Abstract—Recent emergence of passive sensor enabled RFID
tags (sensor tags) is creating new possibilities for low cost and
maintenance free paradigm for industrial and ubiquitous mon-
itoring applications (such as structural health, elder care, cold
chain management). Despite the clear advantages, the widespread
adoption of sensor tag technology requires the development of
middleware to support the management of data streams with
integrated sensor and ID (identification) data. In this paper
we propose a generic middleware architecture adhering to the
standardized EPCglobal architecture for managing integrated
ID and sensor data streams from sensor tags. Furthermore, we
demonstrate its successful implementation, WINDWare, through
laboratory experiments and an application demonstration.

I. INTRODUCTION

Passive Radio Frequency Identification (RFID) is unique
because both power and data is wirelessly sent to the tag by a
reader (as opposed to battery powered sensor nodes). Recent
emergence of passive low cost [1] sensor enabled RFID tags
(here after sensor tags) such as the Wireless Identification
and Sensing Platform (WISP) [2] developed by Intel Research
provide new impetus for commercial [3]–[5] (eg: in cold chain
management where temperature is constantly monitored) and
medical applications [6] while enabling ubiquitous monitoring
[7]–[9] (eg: in elderly care to identify human activities).
However, widespread adoption requires developing not only
low cost sensor tags but also applications and technology
neutral middleware that consider the unique nature of sensor
tag data streams and provide capabilities to manage sensor and
ID data integrated at the hardware layer [10].

Sensor tag data streams are unique because sensor data is
embedded in the tag ID, such as the EPC (Electronic Product
Code) [11]. Sensor tags employ a query-only approach to send
sensor and ID data where a Query command for a tag ID
results in reading the ID from sensor tag memory, and acquir-
ing sensor data and embedding in the ID (Figure 1(a)). The
alternative is to Write sensor data to memory and subsequently
acquire the data by a Query and a Read command [12](Fig-
ure 1(b)). For example, researchers in Igarashi et al. [13]
accessed the structured memory within an RFID tag to acquire
sensor information. However, this approach consumes more
power (148 µW for writing vs. 10 µW for reading [14]) and
degrades performance because: i) the nature of radio wave
propagation (i.e. Friis Transmission Equation [15]) implies that
tags that consume more power must be activated at shorter
ranges; ii) higher power consumption results in slower sensor
data update rates (i.e. duty cycling); and iii) the two round trip

times required to acquire sensor and ID data results in sensor
data acquisition delays. Therefore, new middleware is needed
to process data from sensor tags using the lower power query-
only approach to: i) maximize the read range of sensor tags;
and ii) maximize the rate at which the tags can stream data
back to readers [2].

Furthermore, implementing middleware for managing sen-
sor tag data requires addressing several key issues. Firstly, an
efficient mechanism is required for discovering a sensor tag’s
capability (eg: types of embedded sensors) so that: i) data
can be extracted and transformed correctly from a tag’s ID;
and ii) appropriate filtering and aggregation operations can be
performed on the sensor data (as determined by the sensor
data type such as temperature or acceleration). Secondly, an
application agnostic sensor data and ID data subscription
specification and a data model for reporting high level sensor
tag data (eg: average temperature) to client applications are
needed.

In this paper we develop, WINDWare (Wireless
Identification and Sensor Data Management Middleware),
a generic middleware framework that not only addresses
the lack of a middleware for simultaneously managing both
RFID tag and sensor tag data, but also addresses the above
challenges to facilitate application development in ubiquitous
computing based on sensor tags. Additionally, WINDWare
will accelerate the adoption of sensor tags such as the
WISP. Furthermore, our middleware conforms to existing
standards because we extended the Application Level Event
(ALE) interface of the EPCglobal architecture framework as
proposed in [10], [12] to facilitate subscription and reporting
of data. We summarize our contributions below:

Reader

Middleware

Q
u
e
ry

[ID
 d

a
ta

 | S
e
n
s
o
r d

a
ta

]

ID

S
e

n
s
o

r

(a)

Q
u
e
ry

[ID
 d

a
ta

]

ID

M
e
m

o
ry

S
e
n
s
o
r

R
e
a
d

[S
e
n
s
o
r d

a
ta

]

Reader

Middleware

ID

M
e
m

o
ry

S
e
n
s
o
r

(b)

Fig. 1. Comparison of sensor data acquisition approaches: (a) embedding
sensor data within ID; (b) reading sensor data from tag memory

2014 IEEE International Conference on RFID (IEEE RFID)

978-1-4799-3587-1/14/$31.00 ©2014 IEEE 31

RFID Middleware

ID Management Middleware
[16], [17]

ID & Sensor Middleware

WSN, RFID & Sensor
Tags [18]–[24]

Sensor Tags
(query-only approach)

Fig. 2. Classification of existing RFID supported middleware

• We developed an extensible and generic framework
which conforms to the standardized EPC global ar-
chitecture for managing both ID data streams, and ID
and sensor data streams that occur from sensor tags,
for the first time (to the best of knowledge)

• We proposed a generic data format to embed sensor
data in a tag ID, a new tag data model for integrated
sensor and ID data representation, and an extensible
data model to support subscription and reporting of
ID and sensor data to client applications.

• We demonstrated a successful implementation of our
middleware framework (WINDWare) and tested the
validity of our framework by conducting experiments
using both a simulated and a laboratory environment.

The following sections of the paper are organised as
follows: Section II discusses related work; Section III presents
our proposed architecture of WINDWare; Section IV details
our implementation; Section V presents the experiments con-
ducted and results; and Section VI presents an application of
WINDWare and we conclude the paper in Section VII.

II. RELATED WORK

Currently for RFID, among others, both commercial [18]–
[20] and open-source [16], [17], [21]–[25] middleware are
available. Figure 2 illustrates a classification of existing mid-
dleware, based on the middleware’s ability to manage ID data
and sensor data.

As shown in Figure 2, a number of middleware plat-
forms [18]–[24] has the capability to gather data from wireless
sensor networks where sensor and ID (unique object identifier)
data streams are processed separately as they are generated
from different sources (eg: RFID tags, wireless sensor net-
works). However, the applications that receive data (ID and
sensor data) still have the challenge of associating sensor data
(such as ambient sensors in the environment) with unique
objects (such as sea food cases in a cold chain manage-
ment application). For example,in the middleware proposed
by Bade et al. [21], sensor information is processed to iden-
tify unacceptable environmental states and subsequent RFID
reader scans identify the objects possibly in the undesirable
state. Conversely, in Gama et al. [22], sensor data is polled
from a sensor network upon receiving events from RFID
readers and are presented as set of environmental information
that corresponds to all the observed tags. In work done by
Wang et al. [23], sensor and ID data are reported separately and
data association implied is derived based on sensor location.
These are significantly different low level data collection,
high level data reporting, and sensor and ID data integration
approaches to that required by sensor tags where sensor data
and ID data integration is at the hardware layer (since the

Header Sensor Data Tag Type Serial Number

Tag ID

1 Byte 8 Bytes 1 Byte 2 Bytes

96 bit EPC

256 bit EPC

Fig. 3. Proposed tag format for 96-bit and 256-bit Electronic Product Codes

sensor is on the same platform as the ID carrier). Moreover the
middleware developed is not generic but application specific.

Also, from the perspective of application development
and interoperability it is also important to abstract from im-
plementation, and provide a technology and implementation
agnostic specification for subscription to and reporting of
high level events. While researchers in Gama et al. [22] and
Wang et al. [23] extend the standardized ALE (Application
Level Event) reporting specification [11] for sending sensor
events from sensor networks, they do not integrate ID and
sensor data at the middleware level and are reported as separate
high level events.

Although some existing middleware support sensor data
acquisition from sensor tags [18]–[21], [24], they do not sup-
port the query-only approach but instead support the approach
shown in Figure 1(b). However, these approaches are not
agnostic to tag type (ID tag, sensor tag) since the tag must
be first singulated and subsequently discovered to be a sensor
tag (by way of a lookup as in Igarashi et al. [13]) prior to
acquiring sensor data from a tag’s memory. Furthermore, as
highlighted in Section I, using the approach in Figure 1(b) is
detrimental to the performance of a passive tag in terms of
power consumption and time taken to obtain sensor data.

Therefore, existing middleware have no support for data ac-
quisition from sensor tags that follows the query-only approach
(see Section I). Most of the middleware fail to integrate ID
and sensor data and report them as a single high level event.
In addition, other middleware solutions are limited by their
application specific nature. Consequently, we are motivated to
design and implement a middleware that defines a simple,
flexible and extensible tag data model for both RFID tags
and sensor tags that support query-only approach and provide
a generic framework for implementing, collection, filtering,
aggregation and reporting of both ID and sensor data.

III. MIDDLEWARE ARCHITECTURE

In this section we present the architecture of WINDWare
that manages ID and sensor data streams from passive sensor
enabled RFID tags (sensor tags).

A. Proposed Tag Data Format

We propose a tag ID format (shown in the Figure 3) for
sensor tags based on that used for WISPs [2]. Our proposed
format uses the EPC (Electronic Product Code) defined in
Tag Data Standard [11]. The Header field is set to 0x3D (an
EPC header currently unused and reserved for future use) to
identify a sensor tag. This allows the middleware to process
the sensor data in addition to the ID data as well as manage
existing EPCs from ID tags. The content and the format in
the Sensor Data section depend on the tag type. Proposed tag

2014 IEEE International Conference on RFID (IEEE RFID)

32

TABLE I. DEFINITION OF RFID STANDARDS RELATED TERMS

Term Description
EPC The Electronic Product Code; a globally unique identifier
Event Cycle Smallest unit of interaction with the ALE implementation during

which the ALE interface implementation (middleware) interact with
one or more Readers on behalf of an ALE client

ECSpec Event Cycle Specification; data element defined in the ALE API
which defines the parameters for ECReport, ECReportSpec

ECReport Event Cycle Report; reports tag information for the current event
cycle as specified in corresponding ECReportSPec

ECReportSpec Event Cycle Report Specification; provides the content definition for
the ECReport: readers, event cycle duration, and tag filtering

ECReportOutputSpec EC Report Output Specification; specifies what information on the
final set of EPCs in ECReport is reported

ROSpec Reader Operation Specification; specifies reader operation parameters
(e.g.: identifier, the boundary specification, priority) and configura-
tions such as start and end triggers, and antenna configurations

ROReportSpec Reader Operation Report Specification; appear as a sub element of
ROSpec which describes the contents of the report sent by the Reader
and defines report trigger events

ROBoundarySpec Reader Operation Boundary Specification; defies the span of the
operation (indicating the start trigger and stop trigger)

ROSpecStartTrigger Appear as an element within ROBoundarySpec; defines the trigger
event for the reader to initiate report generation

Source: EPCglobal Inc, Epcglobal ratified standards. [Online]. Available:http://www.gs1.org/gsmp/kc/epcglobal/ [11]

Data Flow
EPC Global

Interfaces
Control Flow

Logical

Blocks

Low Level Reader Event Collection

Reader Interface

Report Specification

Application

Tag Data Extraction ID Data ID Data Sensor Data Sensor Data

Sensor Data Filtering and Aggregation

ID Data Filtering and Aggregation Sensor Data Grouping

Event Cycle Report

Filtering & Collection (ALE) Interface

Enterprise Applications

M
id

d
le

w
a

re

Fig. 4. Sensor tag data management middleware architecture

type definitions are based on WISP tag types1. A combination
of the Tag Type and Serial Number are used to uniquely
identify each sensor tag. Although the serial number is two
bytes for a 96-bit EPC, using a 256 bit EPC can significantly
increase the range of serial numbers, which is essential for
large scale sensor deployments. Therefore, for a specific tag,
only the content of the sensor data field is variable.

B. Architecture Overview

For seamless integration with existing applications, we
base our architecture on the EPCglobal architecture [11].
Figure 4 illustrates the system’s architecture of WINDWare.
Below we discuss how our architecture meets a number of
key requirements identified for RFID middleware in [26] as
well as the specific processing requirements of sensor tags we
identified in Section I.

Low level reader event collection. A standard reader
interface (such as the Low Level Reader Protocol [11]) is used
to collect tag reads from physical devices (eg: RFID readers).

Tag data extraction. In the event of an ID tag no additional
operations are required, however in the event of a sensor tag,
data embedded in the EPC (Figure 3) must be removed and
the tag ID is reconstructed without the sensor data. The sensor
data and ID data are then integrated into a single data structure
defined by the Tag Data Model (see Section IV-A).

1see: https://wisp.wikispaces.com/Working+with+WISP+firmware

ID data filtering and aggregation. Filtering (eg: remove
duplicate IDs) and aggregation operations (eg: count products
of the same category as opposed to reporting tag IDs) specified
by the user based on ID level data is performed by this module.

Sensor data grouping. Since it is possible to have multiple
sensor readings from the same sensor tag, it is necessary
to group the sensor readings by Tag ID. Here we do not
filter to remove duplicates because this process can eliminate
potentially crucial sensor values.

Sensor data filtering and aggregation. Most commonly,
applications are interested in subsets of collected data (filtered
data) [10], [26] such as temperature values above a threshold,
or temperature of a certain product. Sensor data can also be
aggregated (eg: in time or space domain) based on application
requirements. For example, to provide the average temperature
or to combine temperature data from different readers observ-
ing a physical location.

Event Cycle Report. An EventCycle is constructed ac-
cording to a specification called ECReportSpec (see the ALE
Specification [11]) generated by a client (see report specifica-
tion application in Figure 4). While the ECReportSpec speci-
fies several parameters, the two most important parameters are:
i) the time interval during which tag reads are collected and
processed; and ii) the readers from which tags are collected.
Then Event Cycle Report module is responsible for managing
the construction and transmission of the user specified report.

IV. MIDDLEWARE IMPLEMENTATION

We implemented our middleware by extending the Fosstrak
open-source middleware [17] which only supports ID tag
data management. Selection of Fosstrak is based on: i) its
conformance to the EPCglobal architecture [17]; and ii) the
support for LLRP (Low Level Reader Protocol) [11], a stan-
dard Reader Interface, to communicate with RFID readers.

The class diagram in Figure 5 illustrates our middleware
design in Fosstrak. We have only outlined classes added
to (Figure 5(a)) or modified (Figure 5(b)) in the existing
Fosstrak implementation to reduce the complexity of the
diagram. A complete specification of Fosstrak is available from
the developer guide2. Modifications are made to support the
specific functions outlined in Figure 4 for sensor tag data: i)
tag data extraction; ii) sensor data grouping; iii) sensor data
filtering and aggregation; and iv) event cycle report. Since ID
management functionality is already a part of Fosstrak, other
aspects of our proposed architecture utilized existing Fosstrak
capabilities.

A. Proposed Tag Data Model

Figure 5(c) illustrates the proposed tag data model (as
an extension of Fosstrak tag data model) for representing
sensor data. New boolean attribute sensor is introduced to
the Tag class to indicate the containment of sensor data. All
implementations of a sensor tag specific data models are left
to the discretion of the user/developer and must extend the
abstract class SensorData. The SensorData class defines
the attribute type to identify the type of sensor data reported
by a sensor tag (Figure 5c).

2https://code.google.com/p/fosstrak/wiki/AleDevGuideOverview

2014 IEEE International Conference on RFID (IEEE RFID)

33

+addTag(tag : Tag)
+addTagToReportGroup(tag : Tag)
+getECReport() : ECReport

Report

+getTypes() : List<String>
+deembed(tag : Tag)

<<Interface>>

DataExtractor

-extractors : Map<TagType, DataExtractor>

+extractData(tag : Tag)

DataExtractionManager

-sensor : boolean

Tag

-operations : Map<OpName, Operation>

OperationManager

+getName() : string
+getMultiValue() : MultiValueData
+getSingleValue() : SingleValueData

<<Interface>>

Operation

-type : string

<<Abstract>>
SensorData

-reader : String

-origin : String

-tagID : byte[]

-tagIDAsPureURI : String

-binary

-trace : String

-timestamp : long

-tagLength : String

-filter : String

-companyPrefixLength : String

-userMemory

-sensor : boolean

Tag

-type : string

<<Abstract>>

SensorData

+Report(spec: ECReportSpec)

Fig. 5. Extensions: (a) new classes; (b) modified classes; (c) tag data model

B. Tag Data Extraction

DataExtractionManager and DataExtractor
classes provide the framework for tag data extraction
where sensor data is de-embedded from the tag identifier.
DataExtractionManager act as a façade and delegate the
processing of the tag to the appropriate DataExtractor
(data extraction implementation relevant to the sensor
data type, eg: acceleration data extractor for acceleration
sensor data) which is identified by the tag type. The
DataExtractionManager can obtain valid tag types
(eg: 0D and 0B for acceleration tag) for an implementation of
DataExtractor by calling getTagTypes method on the
corresponding DataExtractor implementation. We have
not specified data formats for various sensors and therefore it
is possible to have multiple DataExtractors for the same
sensor where the treatment of the sensor data field (Figure 3),
is left to the discretion of the end-user and/or developer.
Thus providing for a flexible and extensible design. Finally,
DataExtractionManager converts a sensor tag EPC to
a URI (Universal Resource Indicator) by only considering the
tag ID portion of the EPC (see Fig. 3) to allow Fosstrak to
continue to apply existing ID level filtering and aggregations
operations to the ID data of sensor tags.

C. Sensor Data Grouping, Filtering and Aggregation

Unlike with ID data, a variety of filtering and aggregation
operations can be performed on sensor data depending on
application domain requirements and sensor type (eg: accelera-
tion sensor). Report class was modified to implement sensor
data grouping based on logical readers (behaviour of a reader
from the perspective of a report subscriber) [11] and tag IDs.
Sensor data filtering is managed by the OperationManager
which is responsible for maintaining a list of implemen-
tations of Operation interface. Each implementation of
Operation interface can encapsulate specific filtering or
aggregation operation to be performed on the acquired sensor
data. The operations specified in the ECReportSpec (see
Fig. 7(b)) by subscribers are matched against the registered
operation implementations using the operation name (see Fig.
5(a) Operation interface) to support sensor data filtering
and aggregation requests.

D. Event Cycle Report

Sequence diagram in the Figure 6 visualizes the behaviour
of an EventCycle (see ALE in [11] and Table I). During
an EventCycle the getECReports method in the modified
Report class is invoked to prepare a report according to the
ECReportSpec specification (which is provided as a construc-
tor argument to the Report class upon instantiation when
subscribing to the report) and return an ECReport object.

Figure 7(a) shows extensions to the ECReportSpec data
model to allow clients to subscribe to not only ID tag but also
sensor tag data. The corresponding attribute descriptions are
provided in Table II. Moreover, to enable users to specify sen-
sor data filtering and aggregation operations with specific argu-
ments, a new structure (OperationType) is introduced to the
ECReportSpec. The unique operationID in OperationType
allows the users to specify the same operation multiple times
with different arguments and isolate each of the returned results
without ambiguity (eg: first 10 FFT coefficients and last 10
FFT coefficients).

ALE standard [11] defines three kinds of report sets that
client can subscribe to: i) CURRENT (tags in current Event-
Cycle); ii) ADDITIONS (new tags in current EventCycle);
and iii) DELETIONS (tags in previous EventCycle not in
current EventCycle) for ID tag filtering. In light of sensor
data, ADDITIONS and DELETIONS are meaningless and
CURRENT is inadequate. Therefore new report set, SENSOR,
is defined to specify filtering and aggregation operations on
sensor data within the current EventCycle and these operations
are evaluated only if they are specified along with the SENSOR

op :

Operation

om :

Operation

Manager

em :

DataExtraction

Manager

Report :

Report

EventCycle

5: ECReport

2.1: extractData(tag : Tag)

2: addTag(tag : Tag)

1: getECReport()

3: getOperation(): op

6: getMultiValue() : MultiValueData

4: getSingleValue() : SingleValueData

Fig. 6. Interaction with Fosstrak

2014 IEEE International Conference on RFID (IEEE RFID)

34

ECReportSpec

Operation

+includeId : boolean

+includeSensor : boolean

ECReportOutputSpec

ECReportSetSpec

ECReportSpecEnum

SENSOR

0..1

+name : string

+operationID : string

OperationType

+name : string

Arg:string

1..*

0..*

(a) ECReportSpec data model extensions to specify sensor data operations

ECReport ECReportGroup ECReportGroupList

LogicalReader

+logicalReader : string

SensorGroup

+sensorTag

ECReportSensorDataExtension
-name

-value

-type

-operationID

SingleValue -name

-type

-operationID

MultiValue

-key : string

Value:string

0..*

0..*

0..*

1..*
0..*

0..*

(b) ECReport data model extensions to report sensor data

Fig. 7. ECReportSpec and ECReport data model extensions (see Table II
for attribute descriptions)

TABLE II. DESCRIPTIONS OF THE ATTRIBUTES IN EXTENDED
ECREPORTSPEC AND ECREPORT DATA MODELS

Element Attribute Description
ECReportOutputSpec includeId If true ID data of the ID tags are included
ECReportOutputSpec includeSensor If true ID data of the sensor tags are included
OperationType name Name of the operation which should corresponds

to the implemented operation name
OperationType operationID Uniquely identifies the operation. Operation im-

plementations return results with this ID
Arg name Name of the argument and is depend on the

enclosing operation
SingleValue/MultiValue name The name distinguishes the multiple outputs from

a single operation
SingleValue/MultiValue type Data type of the output (eg: float, double, int)
SingleValue/MultiValue operationID The operationId of the operation which produce

the output
SingleValue value Value returned by the operation
Value key The key provides unique identification or meta-

data for a specific value with in a MultiValue
element.

report set.

A new structure for reporting sensor data to subscribers
(clients) is introduced to the ECReport while maintaining
flexibility as well as extendibility to support future changes and
multiple sensor types. Figure 7(b) shows the design of ECRe-
port extensions where the attribute descriptions are provided
in the Table II. Two data structures were defined to represent
single-valued (SingleValue) and multi-valued (MultiValue)
outputs from filtering and aggregation operations. Moreover,
the optional attribute key specified in Value provides unique
identification or meta-data related to the represented value. The
value of the key is determined by the operation implementation
(eg: for operations FFT and raw sensor data reporting the
key can be the FFT component and timestamp of the reading
respectively). Ability to represent the output of any operation
is a significant advantage of this framework.

V. EXPERIMENTS AND RESULTS

Initially, the proposed design for WINDWare is imple-
mented as specified in Section IV using Fosstrak-1.2.0 re-
lease. We implemented the AccelerationExtractor
class which implements the DataExtractor interface and
a tag data model for WISP tags with accelerometer sensors
(Figure 10(a)). The sensor data, embedded in an EPC from
a WISP, is stored in AccelerationTag which is assigned
as sensor data to the corresponding Tag (see Figure 5(c)).
Figure 10(b) shows the implementation.

+getTypes() : List<String>

+deembed(tag : Tag)

<<Interface>>

DataExtractor +getTypes() : List<String>

+deembed(tag : Tag)

AcceletationExtractor

(a) AccelerationExtractor

-type : string

<<Abstract>>

SensorData -x : float

-y : float

-z : float

AccelerationTag

(b) Acceleration tag data model

Fig. 10. Acceleration tag implementation

We have implemented five concrete implementations of
Operation interface to generate sum, average, raw sen-
sor data representation, resultant acceleration and FFT (Fast
Fourier Transform) for a sensor tag with an acceleration sensor
that reports x, y and z acceleration components. We used
SingleValue to report results from operations which return one
value (such as sum and average operations). For operations
which return multiple values, such as the FFT, MultiValue
structure was used (Section IV-D).

We conducted two sets of experiments: i) with the real
hardware; and ii) with an RFID emulator. Our experiments
were designed to: i) evaluate ID tag filtering functionality (to
confirm that existing Fosstrak functionality is not affected and
that sensor tags are correctly processed by existing Fosstrak
operations for ID tags); and ii) evaluate sensor data filtering
and aggregation operations.

A. Experiments with a Hardware Setting

Our aim here is to test the overall functionality of
WINDWare. We used an Impinj Speedway Revolution (R420-
GX11M) reader with a circularly polarized antenna, two
WISPs with acceleration sensors, and regular RFID tags. We
specified two report sets (Figure 8(a)): i) CURRENT; and
ii) SENSOR. In the CURRENT report set the WINDWare
reported the ID data as expected in the original Fosstrak
implementation and provided positive evidence that existing
Fosstrak functionality is not affected by our extensions and
additions (Figure 8(b)). Moreover, with the CURRENT report
set, it was able to report the ID information of the sensor tags
and confirm that the extensions to Fosstrak was successfully
able to process the sensor tag data (see Figure 8(b)). When
report set SENSOR is used, only the ID and sensor data related
to sensor tags were reported (furthermore, the results of the
sensor data filtering and aggregation operations were available,
which is the expected behaviour) as shown in Figure 8(c). Re-
sults from the specification of both CURRENT and SENSOR
report demonstrate the sensor tag data management capability
of WINDWare.

2014 IEEE International Conference on RFID (IEEE RFID)

35

<ns2:ECSpec xmlns:ns2="urn:epcglobal:ale:xsd:1">
 <logicalReaders>... </logicalReaders>
 <boundarySpec>...</boundarySpec>
 <reportSpecs>
 <reportSpec reportName="CURRENT_Report">
 <reportSet set="CURRENT"/>
 <output includeRawHex="true" includeRawDecimal="true"
includeEPC="true" includeTag="true" includeSensor="true"
includeId="true"/>
 </reportSpec>
 <reportSpec reportName="SENSOR_Tags_Report">
 <reportSet set="SENSOR"/>
 <output includeRawHex="true" includeRawDecimal="true"
includeEPC="true" includeTag="true"/>
 <operations>
 <Operation name="Average" operationID="average">
 <arg name="total">8</arg>
 </Operation>
 <Operation name="Sum">
 <arg name="less than">0</arg>
 </Operation>
 <Operation name="FFT">
 <arg name="less than">50000</arg>
 <arg name="greater than">10000</arg>
 </Operation>
 </operations>
 </reportSpec>
 </reportSpecs>
</ns2:ECSpec>

Report set
CURRENT

Report set
SENSOR

(a) Report specification (ECReportSpec)

<report reportName="CURRENT_Report">
 <group>
 <groupList>
 <member>
 <epc>urn:epc:id:wisp:90044907186256000.11.63854</epc>
 <tag>urn:epc:tag:wisp-96:90044907186256000.11.63854</tag>
 <rawHex>urn:epc:raw:96.x3D013FE75DB2AB78800BF96E</rawHex>
 <rawDecimal>urn:epc:raw:96.18880096301959612961355725166</rawDecimal>
 </member>
 <member>
 <epc>urn:epc:id:sgtin:38762147710.03.184649852029</epc>
 <tag>urn:epc:tag:sgtin-96:1.38762147710.03.184649852029</tag>
 <rawHex>urn:epc:raw:96.x302520CCEDEFC0EAFDFD247D</rawHex>
 <rawDecimal>urn:epc:raw:96.14900165622758681865587860605</rawDecimal>
 </member>

 ...
 </groupList>
 ...
 </group>
</report>

ID data from sensor tag

ID data from ID tag

(b) ECReport for report set CURRENT in (a) with ID data from both ID tags and sensor
tags

<report reportName="SENSOR_Tags_Report">
 <group>
 <groupList>
 <member>
 <epc>urn:epc:id:wisp:256866449905234665.11.35951</epc>
 <tag>urn:epc:tag:wisp-96:256866449905234665.11.35951</tag>
 <rawHex>urn:epc:raw:96.x3D039092ACDD5132E90B8C6F</rawHex>
 <rawDecimal>urn:epc:raw:96.18882895103015262493717793903</rawDecimal>
 </member>
 <Sensor_Tag>
 <SensorGroup LogicalReader="Reader1">
 <Sensor_TAG_Member Sensor_Tag="1010000001011011">
 <Sensordata operationID="average" type="float" value="-246.98047" name="x"/>
 <Sensordata operationID="average" type="float" value="-6651.5625" name="y"/>
 <Sensordata operationID="average" type="float" value="1198.5156" name="z"/>
 <MultiValue operationID="dataStream" Type="float" name="x">
 <Value key="1374396036466">-246.98047</Value>
 <Value key="1374396036465">-246.98047</Value>
 ...
 </MultiValue>
 </Sensor_TAG_Member>
 </SensorGroup>
 </Sensor_Tag>
 </groupList>
 ...
 </group>
</report>

ID data from sensor tag

Sensor data from sensor tags
Single valued output

Multi-valued output

(c) ECReport for report set SENSOR in (a) with ID and sensor data from sensor tags

Fig. 8. Hardware experiment subscription and reporting

B. Experiments with a Reader Emulator

Rifidi Emulator3 has the capability to emulate: i) LLRP
protocol supported RFID readers; and ii) multiple EPC tags
and tag types. Therefore, Rifidi Emulator is employed to
emulate the functionality of one LLRP supported reader and
multiple ID and sensor tags required for the experiment. Three
report sets were specified: i) CURRENT and SENSOR; ii)
CURRENT; and iii) SENSOR. In all report specifications,
report event cycle is specified as two seconds based a near
real-time monitoring application context (see section VI).
All implemented sensor filtering operations were specified
in subscription arguments for the SENSOR report set. Tests
were carried out having: i) only ID tags; ii) only sensor
tags; and iii) a mixture of ID and sensor tags (1:1 ratio for

3http://www.rifidi.org/

an unbiased assessment) to evaluate the middleware against
each tag type. Having only the ID tags provide a baseline
for comparing our middleware implementation as ID tags are
processed by the existing ALE implementation in Fosstrak. We
recorded the time taken to generate the reports (duration of
getECReportMethod in EventCycle) specified in the sub-
scribed ECReportSpec. The emulated reader was configured
with the following LLRP settings: i) for ROBoundarySpec,
ROSpecStartTriggerType (which defines the trigger event for
the reader to initiate generation of reports according to the
defined ROSpec) was specified as periodic with the period of
5000 ms; and ii) for reporting tags ROReportSpec (see Table
I) was configured to trigger upon each tag detection or end of
ROSpec.

Figure 9 depicts the results of the emulated test. Figure 9(a)
shows the behaviour of the middleware for report set CUR-

2014 IEEE International Conference on RFID (IEEE RFID)

36

0 20 40 60 80 100 120
0

0.1

0.2

0.3

of tags

M
e
a
n
 t
im

e
 (

s
)

Sensor

ID

Both

(a) Report set CURRENT

0 20 40 60 80 100 120
0

0.1

0.2

0.3

of tags

M
e
a
n
 t
im

e
 (

s
)

Sensor

ID

Both

(b) Report set SENSOR

0 20 40 60 80 100 120
0

0.1

0.2

0.3

of tags

M
e
a
n
 t
im

e
 (

s
)

Sensor

ID

Both

(c) Report sets CURRENT and SENSOR

Fig. 9. Report sets from the experimental results with Rifidi Emulator

RENT specified in ECReprtSpec which reported only the ID
data for both ID tags and sensor tags. No difference in the
mean time between sensor and ID tags are observed.

Graph in Figure 9(b) depicts the report generation time
when report set SENSOR (only generate reports for sensor
tags) is specified. It is observed that sensor operations con-
sumed linearly increasing time with respect to sensor tags in
the field of view. Where both ID and sensor tags are in the
field, a report is only generated for 50% of the tags seen by
the reader (as ID tags are filtered out from the SENSOR report
set) and hence time measured reflects the time taken to process
the sensor tags and filter ID tags.

Figure 9(c) illustrates the mean report generation time
when report set, CURRENT and SENSOR are requested. The
SENSOR report set is requested with all the implemented fil-
tering operations. The resulting report contained, two separate
report sections (CURRENT report set and SENSOR report
set). The results are similar to 9(b) but now time taken to
process ID tags are also included.

VI. EXAMPLE APPLICATION

To demonstrate our middleware, we developed a prototype
monitoring application to identify potential damages to goods
(eg. miss-handling of fragile items such as LCD screens) in a
supply chain. The damage monitoring scenario is performed in
a laboratory environment using Impinj Speedway Revolution
(R420-GX11M) reader with two circularly polarized antennae
as shown in Figure 11(a). The items being monitored are
attached with WISP tags having a 3D acceleration sensor.

Identification of potential damages are two fold: i) an item
dropping on to the ground is identified by detecting the free
fall (where the resultant acceleration approaches zero); and
ii) a damage due to a high impact or a shock is identified
by high resultant acceleration. In order to receive notifica-
tions on potentially damaged items, ECReportSpec depicted
in Figure 11(b) is used, where the Resultant Acceleration
operation with operationID threshold is specified with
two arguments to detect free fall (less-than 0.5) and high
impact (greater-than 1.5). We have also subscribed to
the raw sensor data streams (operationID: dataStream)
and resultant acceleration (operationID: ra) to validate the
potentially damage event reported by the threshold operation.

The Figure 11(c) shows a screenshot of the developed
monitoring application. This application subscribes to WIND-
Ware using the defined ECReportSpec (Figure 11(b)). Items
are dropped on to the ground to simulate free fall and high
impact (upon collision with the ground). In 11(c), we have

(a) Damage monitoring scenario equipment set-up

<operations>
 <Operation name="Data" operationID="dataStream"/>
 <Operation name="ResultantAcceleration" operationID="ra"/>
 <Operation name="ResultantAcceleration"

operationID="threshold">
 <arg name="greater_than">1.5</arg>
 <arg name="less_than">0.5</arg>
 </Operation>
</operations>

Specification to evaluate
resultant acceleration and
filter to select potential
damage events

(b) ECReportSpec for damage monitoring application

(c) Screenshot of the prototyped damage monitoring application

Fig. 11. An application of WINDWare for real-time monitoring

highlighted (plotted in red) the results reported by the filter
operation to select potential damage events based on evaluating
the resultant acceleration from the WISP attached to the item.
By only subscribing to the operation with operationID
threshold, events of interest (free fall and shock) are received.
Therefore, use of sensor data management middleware such
as WINDWare: i) reduces the complexity of client applica-
tions by allowing application developers to focus on business
logic; ii) allows development of applications that are agnostic
to underling sensing infrastructure; and iii) reduces network
traffic from large volume sensor data streams.

2014 IEEE International Conference on RFID (IEEE RFID)

37

VII. CONCLUSION AND FUTURE WORK

In this paper we present the design, implementation4 and
evaluation of WINDWare (Wireless Identification and Sensor
Data Management Middleware), a middleware for passive
sensor enabled RFID tags for the first time (to the best of
knowledge). In particular, our middleware provides: i) extract-
ing sensor and ID data; ii) operations on sensor data (filtering
and aggregation); and iii) sensor data subscriptions and re-
porting. Our generic middleware architecture is implemented
by extending Fosstrak. Furthermore, WINDWare adheres to
the standardized EPCglobal architecture through implementing
the ALE specification and using the extensions provisioned by
standards. Finally, the real world applicability of WINDWare
is demonstrated through a prototype application.

Passive sensor enabled RFID data streams are unique; each
sensor event consists of both ID data and sensor data. The
proposed middleware processes the ID data and sensor data in
unison maintaining the important relationship between sensor
data and its source. In contrast, other sensor data supported
middleware lacks the capability to associate ID with sensor
data, thus report sensor data and ID data separately [22],
[23]. This association is paramount, particularly in real-time
applications such as human activity recognition [7].

Currently reporting measurement units capability of sensor
data is not provided. The ability to report measurements is
seen as important in terms of interoperability and sharing
of information. However, this limitation can be overcome
by implementing unit conversion at the operation level and
specifying the required unit of the output as an operation
argument in ECReportSpec. Furthermore, the 1 byte tag
type proposed, which only allows 256 tag types, may not be
adequate to encode the tag capabilities in the future with the
increasing numbers of embedded sensor types.

In future, we will include filtering and aggregation support
for other sensor types and investigate the use of an efficient tag
capability lookup mechanism to address the above mentioned
limitations. Moreover, measurement units reporting ability will
be incorporated to the data model to increase the interoperabil-
ity and facilitate information sharing. Furthermore, creation of
an open source project for the WINDWare, will be considered.

ACKNOWLEDGMENTS

This research was supported by a grant from the Australian
Research Council (DP130104614).

REFERENCES

[1] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and D. Wetherall,
“Revisiting smart dust with RFID sensor networks,” in Proceedings of
the 7th ACM Workshop on Hot Topics in Networks (HotNets-VII), 2008.

[2] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R.
Smith, “Design of an RFID-based battery-free programmable sensing
platform,” IEEE Transactions on Instrumentation and Measurement,
vol. 57, no. 11, pp. 2608–2615, 2008.

[3] A. Ruhanen, M. Hanhikorpi, F. Bertuccelli, A. Colonna, W. Malik,
D. Ranasinghe, T. S. Lopez, N. Yan, and M. Tavilampi, “Sensor-enabled
RFID tag handbook,” 2008.

[4] Smith, Joshua R, Ed., Wirelessly Powered Sensor Networks and Com-
putational RFID. New York: Springer, 2013.

4WINDWare is available from:https://windware.googlecode.com

[5] K. Eom, C. W. Lee, N. T. Van, K. K. Jung, J. W. Kim, and W. S.
Choi, “Food poisoning prevention monitoring system based on the smart
RFID tag system,” International Journal of Multimedia and Ubiquitous
Engineering, vol. 8, pp. 213–222, 2013.

[6] A. Dementyev and J. R. Smith, “A wearable UHF RFID-based EEG
system,” in IEEE International Conference on RFID (RFID), 2013, pp.
1–7.

[7] D. C. Ranasinghe, R. L. Shinmoto Torres, K. Hill, and R. Visvanathan,
“Low cost and batteryless sensor-enabled radio frequency identification
tag based approaches to identify patient bed entry and exit posture
transitions,” Gait & Posture, vol. 39, pp. 118–123, 2014.

[8] R. L. Shinmoto Torres, D. C. Ranasinghe, Q. Shi, and A. P. Sample,
“Sensor enabled wearable RFID technology for mitigating the risk of
falls near beds,” in IEEE International Conference on RFID (RFID),
2013, pp. 191–198.

[9] V. Talla, M. Buettner, D. Wetherall, and J. Smith, “Hybrid analog-digital
backscatter platform for high data rate, battery-free sensing,” in IEEE
Topical Conference on Wireless Sensors and Sensor Networks (WiSNet),
2013, pp. 1–3.

[10] T. S. López, D. C. Ranasinghe, B. Patkai, and D. McFarlane, “Tax-
onomy, technology and applications of smart objects,” Information
Systems Frontiers, vol. 13, no. 2, pp. 281–300, 2011.

[11] EPCglobal Inc, “Epcglobal ratified standards.” [Online]. Available:
http://www.gs1.org/gsmp/kc/epcglobal/

[12] D. C. Ranasinghe, K. S. Leong, M. Ng, D. W. Engels, and P. H. Cole,
“A distributed architecture for a ubiquitous RFID sensing network,”
in Proceedings of the International Conference on Intelligent Sensors,
Sensor Networks and Information Processing Conference, 2005, pp. 7–
12.

[13] Y. Igarashi, K. Miyazaki, Y. Sato, and J. Mitsugi, “A network archi-
tecture for fast retrieval of user memory data from sensor RF tags,” in
2013 IEEE International Conference on RFID (RFID), pp. 184–190.

[14] Z. Cheng, X. Zhang, Y. Dai, and Y. Lu, “Design techniques of low-
power embedded EEPROM for passive RFID tag,” Analog Integrated
Circuits and Signal Processing, vol. 74, no. 3, pp. 585–589, 2013.

[15] C. A. Balanis, Antenna Theory: Analysis and Design. John Wiley &
Sons.

[16] X. Su, C.-C. Chu, B. S. Prabhu, and R. Gadh, “On the identification
device management and data capture via WinRFID1 edge-server,”
Systems Journal, IEEE, vol. 1, no. 2, pp. 95–104, 2007.

[17] Fosstrak, “Fosstrak - open source RFID platform - google project
hosting,” 2013. [Online]. Available: https://code.google.com/p/fosstrak/

[18] Oracle, “Data sheet: Oracle warehouse management,” 2014.
[Online]. Available: http://www.oracle.com/us/products/applications/
ebusiness/054354.pdf

[19] IBM, “IBM - WebSphere sensor events - united states,” Feb.
2014. [Online]. Available: http://www-03.ibm.com/software/products/
en/webssenseven/

[20] SAP, “SAP - SAP auto-ID infrastructure.” [Online]. Available:
http://www.sap.com/platform/netweaver/autoidinfrastructure.epx

[21] D. Bade and W. Lamersdorf, “An agent-based event processing middle-
ware for sensor networks and RFID systems,” The Computer Journal,
vol. 54, no. 3, pp. 321–331, 2011.

[22] K. Gama, L. Touseau, and D. Donsez, “Combining heterogeneous
service technologies for building an internet of things middleware,”
Computer Communications, vol. 35, no. 4, pp. 405–417, 2012.

[23] W. Wang, J. Sung, and D. Kim, “Complex event processing in EPC
sensor network middleware for both RFID and WSN,” in 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008, pp. 165–169.

[24] I. Abad, C. Cerrada, J. A. Cerrada, R. Heradio, and E. Valero, “Manag-
ing RFID sensors networks with a general purpose RFID middleware,”
Sensors, vol. 12, no. 6, pp. 7719–7737, 2012.

[25] K. Dutta, K. Ramamritham, B. Karthik, and K. Laddhad, “Real-time
event handling in an RFID middleware system,” in Databases in
Networked Information Systems. Springer, 2007, pp. 232–251.

[26] C. Floerkemeier, C. Roduner, and M. Lampe, “Rfid application devel-
opment with the Accada middleware platform,” Systems Journal, IEEE,
vol. 1, no. 2, pp. 82–94, 2007.

2014 IEEE International Conference on RFID (IEEE RFID)

38

