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Abstract—The increasing ageing population around the world
and the increased risk of falling among this demographic,
challenges society and technology to find better ways to mitigate
the occurrence of such costly and detrimental events as falls.
The most common activity associated with falls is bed trans-
fers; therefore, the most significant high risk activity. Several
technological solutions exist for bed exiting detection using a
variety of sensors which are attached to the body, bed or
floor. However, lack of real life performance studies, technical
limitations and acceptability are still key issues. In this research,
we present and evaluate a novel method for mitigating the
high falls risk associated with bed exits based on using an
inexpensive, privacy preserving and passive sensor enabled RFID
device. Our approach is based on a classification system built
upon conditional random fields that requires no preprocessing of
sensorial and RF metrics data extracted from an RFID platform.
We evaluated our classification algorithm and the wearability
of our sensor using elderly volunteers (66-86 y.o.). The results
demonstrate the validity of our approach and the performance is
an improvement on previous bed exit classification studies. The
participants of the study also overwhelmingly agreed that the
sensor was indeed wearable and presented no problems.

I. INTRODUCTION

Falls occur commonly in residential care and hospitals,

especially at night and in the surroundings of the bed [1]–[3].

Falls are costly as patients have a longer length of stay (LOS)

at hospitals [4] and can result in anxiety, depression and a loss

of independence; similarly, caregivers and nurses may also be

affected by psychological trauma [5]. Monitoring the patient

and recognizing their high risk falls related activities provide

an opportunity to intervene and prevent a fall or provide

immediate attention from a caregiver [6], [7] as opposed to

falls detection [8], [9]. However, a fall detection strategy does

not server as a falls mitigation strategy.

Previous studies were focused on detecting bed exits. In

the case of methods in [6], [7], [10]–[12], these were based

on one or multiple sensors strategically placed on or around

the bed. Most of these methods involved pressure sensors

achieving varying performance results as a consequence of

the multiple types of sensing units employed. Furthermore,

pressure sensors were found unreliable with patients lighter

than 45.4 kg, a common weight for frail patients, but improved

performance was achieved in combination with other sensors

[12]. The location of these units (bed mats, bed rails, floor

mats) makes them susceptible to constant mechanical stress,

requiring regular maintenance and/or replacement. In addition,

these units need thorough cleaning as they may be exposed to

body fluids and/or other contaminated material.

Other studies focused on human activity recognition. These

methods used different sensor systems, which can be divided

either into worn sensors or environment sensors. However,

a more accurate categorisation of these studies can be done

based on their classification system: i)techniques based on

threshold based algorithms; and ii)machine learning based

approaches. From the former, in [13]–[16] sensors such as

accelerometers and gyroscopes were used to extract physical

features as input to a threshold based classification system as

first proposed by Najafi [13]. Most methods required the use of

bulky battery powered devices with multiple sensors that were

attached to the subject’s body. This approach implies heavy

instrumentation of the subject which is not practicable with

frail elderly subjects, and a high maintenance cost [13]–[15].

Furthermore, these methods relied on heavily preprocessed

data e.g. multiple filtering stages, prior to the classification

algorithms to isolate information content or extract desired

features. This results in unwanted delays, added computational

overhead and algorithmic complexity; all of which are detri-

mental to a responsive, scalable system [13]–[16].

Studies based on machine learning based classifiers, such as

those of [17]–[22], included hidden Markov models (HMM),

conditional random fields (CRFs) and support vector machines

(SVMs). Generally, these methods demonstrated better perfor-

mance than threshold based methods but to varying degrees

of success. In the case of [17]–[19], these techniques suffered

similar practical deficiencies as those of the threshold based

methods i.e. battery powered equipment and subject instru-

mentation. In contrast, the methods in [20]–[22], all subjects

were instrument free but the setting was around independent

living, which is not the case for our target population. In

addition, results showed great variability, this inconsistency

affects the application of these techniques to elder care in

a medical environment as result discrepancy leads to poor

reliablity and lack of acceptance over time of a proposed

strategy.

In order address the shortcomings of previous methods for

bed exit detection, in this article, we propose an accurate, low
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computational overhead, low latency and low cost method

for mitigating the risk of falls caused by bed exiting of

elderly patients in hospitals and residential care environments.

Furthermore, have addressed the issues of privacy concerns

around using video based approaches [23] by indirectly infer-

ring the activities of patients.

Firstly, our proposed approach utilizes a light, low cost,

inexpensive, battery free RFID tag called Wearable WISP

(Wireless Identification and Sensing Platform) or W2ISP [24]

(see Section II-A). This sensor is worn by elderly patients

attached to their clothes (Figure 1(b)). Secondly, in order to

improve the system responsiveness we keep the computational

cost low by using a single accelerometer per person and

minimum data preprocessing by eliminating filtering steps.

Responsiveness is a key consideration because of the urgency

of attending to a high risk situation (such as bed exiting)

requires a prompt system response to provide a timely alert to

a caregiver to proceed to an intervention in a hospital environ-

ment as described in [25]. Thirdly, to consider the dependency

among consecutive activities, we use CRFs [26] to model

and predict activities with flexibility of introducing various

features to improve the performance of previous approaches

[16]. Finally, since the use of video images for monitoring

systems has been perceived as intrusive [23] to a patient’s

privacy, our approach preserves the privacy of a person. In

summary, the contributions of this paper are as follows:

• We designed a simple approach for supporting bed exit

classification using a single truly wearable device for

the first time (to the best of our knowledge). The de-

vice is small, low cost, battery-less and can be worn

continuously; moreover, the device relies on a single

accelerometer sensor and is able to protect a patient’s

privacy.

• Utilize noisy and incomplete information effectively for

activity classification by using conditional random fields

based algorithm.

• Present a method that has been proven in elderly popu-

lation as we have conducted extensive trials with elderly

volunteers (66 to 86 years old), closely resembling the

target population for this application as opposed to our

previous trial using healthy adult volunteers [16].

The rest of the paper is organized as follows, Section II gives

a brief overview the overall system and the data sources used;

Section III describes the experimental settings and procedures,

Section IV describes our experimental results and we present

our conclusions in Section V.

II. SYSTEM OVERVIEW

The proposed monitoring system consists on a wireless

sensing platform, an activity recognition system (ARS) and

a bed exit alert system (BEAS).

A. Wireless Sensing Monitoring Environment

The wireless sensor, W2ISP [24], is a passive RFID tag

based on the WISP developed in [27] (see Figure 1(a)). A

W2ISP includes a tri-axial accelerometer (ADXL330) and a

TABLE I
PARAMETERS REPORTED BY A READ EVENT FROM THE RFID READER)

Parameter symbol

Tag Identification tID

Antenna Identification aID

Acceleration on X* axis av

Acceleration on Y* axis al

Acceleration on Z* axis af

Frequency Channel fCH

Phase φ

Received Signal Strength Indicator RSSI

*X, Y and Z axes are relative to the sensor; vertical(v), lateral(l) and
frontal(f) axes are relative to the subject.

microprocessor (MSP430F2132) and is powered by the elec-

tromagnetic (EM) energy radiated by nearby RFID antennae.

The accelerometer works in low power mode and therefore

requires minimum power to read the sensor. Although the low

power operation mode increases read rate, it also introduces

noise. The W2ISP differs mainly from the WISP [27] in its

wearability and increased read range as the tag employs an

improved flexible antenna that isolates human body effects

by using a conductive fabric. Experimentally, the sensor has

reported a maximum read range of 4 m from [24] when

attached over a person’s chest area, on top of their clothing

(see Figure 1(b)).

Three or four antennae located around the patient’s room,

directed mainly towards the chair, bed and walking area, due

to the high risk of falls associated with these areas [1] are

used to capture data from W2ISPs. Antennae are powered

by an Speedway Revolution reader operating at the regulated

Australian RF frequency band of 920-926 MHz operating at a

maximum regulated power of 1 W. Antennae were strategically

located to closely simulate a real hospital room deployment

(see Section III-A). Furthermore, the reader is capable of

reading and discriminating multiple tags simultaneously. The

information from the reader, shown in Table I, is reported to an

in-house designed middleware which formats and timestamps

the data for further analysis by the classification algorithms.

B. Classification Problem

We must consider two key issues related to our classification

system. First, we need to understand the sequence of activities

comprised in bed exiting. Based on observations of elderly

subjects we considered the sequence of states:

• Lying

• Sitting on bed

• Out of bed.

Secondly, we need to acknowledge the limiting nature of

RFID technology. The effects of variable distance to antenna,

destructive interference due to multipath, RF band interference

and occlusion by RF opaque objects such as the human

body, cause irregular, incomplete and noisy readings which

are delivered to the ARS. Hence, the sequence of activities

from the sensor that describe a bed exit can be discontinuous
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Fig. 1. (a) Wearable WISP showing sensor and accelerometer axes, (b)
Elderly volunteer with Wearable WISP attached to garment.

Fig. 2. Process sequence for (a)Lying to sitting, (b) Sitting to standing

(e.g. Lying to Out-of-bed). In addition, we have to consider

sensor noise due to the sensor working on inadequate power.

Finally, we can indicate that a bed exit event is recognized

as such if an Out-of-bed activity has been predicted, given that

the previous activity was either Sitting-on-bed or Lying.

C. Activity Recognition System

Given an observation sequence X = (xt)
T
t=1

, where

xt ∈ R
d and T is the length of the sequence. The Activity

Recognition System (ARS) is to predict the associated activity

sequence (i.e. label) Y = (yt)
T
t=1

, where yt ∈ {1, · · · , C}.

Here C is the number of activities (classes).

Here we use CRFs to build our ARS (activity recognition

system), because CRFs naturally model the dependencies of

the activities in one sequence. CRFs assume the conditional

distribution from exponential family below [26],

p(Y |X;λ) =
1

Z(X,λ)
exp

(

∑

k

λk

T
∑

t=1

Fk (yt−1, yt, X, t)

)

(1)

Z(X,λ) =
∑

Y

exp

(

∑

k

λk

T
∑

t=1

Fk (yt−1, yt, X, t)

)

, (2)

where Fk are the feature functions and λ = (λk)k are

the weight vector. Z(X,λ) is a normalization constant. The

parameter λ of the CRF can be learnt via maximizing the

likelihood. Here we use Limited-memory BFGS (LBFGS) [28]

to maximizing the likelihood. Given X and λ, ARS predicts

the label Y ,

Y = argmax
Y

p(Y |X;λ), (3)

where we use the Viterbi algorithm to get the maximal

assignment for the label Y instead of exhaustive search.

D. Model Setting

We consider a CRF model based on the sequence of states

determined in Section II-B (Figure 3). Observations are ex-

tracted directly from the reader reported data, we consider for

each observation the following data [av, al, af , RSSI, aID].
The value of RSSI is of interest as an indicator of relative

distance to surrounding antennae, a higher RSSI value to a

certain antenna would indicate the tag is in closer vicinity

than to an antenna with a lower RSSI to the same tag. In

addition, we consider the body tilting angle θ towards the

front and back from the vertical reference (see Figure 2(b)).

The angle θ is a rich source of information for body posture

and transition [13], [14], [16], which is approximated from

current acceleration values θ = arctan
(

af

av

)

; furthermore,

we consider the sin(θ) as alternative to θ as is proportional

to θ and range limited to [-1,1].

Acceleration and sin(θ) are continuous signals with infinite

amount of possible state sequences; therefore we quantized

both signals to steps of 0.05(g for acceleration), and con-

strained these signals to the range of [-1,1]. This range is

enough to include all activities of interest as acceleration val-

ues exceeding this range are unlikely for elderly patients with

the exception of falling, which can reach high acceleration

values.

We include the time difference (△t) between an observation

xt and its prior xt−1. Similarly, this information is quantized

into steps of 0.025 s as the minimum △t between consecutive
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yt-1 yt yt+1

xt-1 xt xt+1

......

Fig. 3. CRF model: Sequence of labels yt depend on sequence of
observations xt; in our case yt can take values: Lying, Sitting on bed or
Out of bed.

observations and limited to a maximum △t = 10 s, as we

consider this time sufficient for a person to be in a steady

state.

E. Bed Exit Alert System

We evaluate the recognition of bed exit events in the se-

quence of observations in an alert setting context. The Bed Exit

Alert System (BEAS) is to provide an alert signal, provided the

current ARS output yt = {Out-of-bed}, and previous output

yt−1 = {Lying, Sitting-on-bed}, independent of the number

of consecutive readings in the current state.

We consider this approach because few identification errors

scattered along a test sequence can trigger multiple alarm

errors as opposed to multiple recognition errors in a sequence

batch that can trigger a single alarm error. This is because

we make a prediction per each sample observation. Since the

nature of this system is to notify caregivers/nurses of a high

risk activity being performed, the alert signal needs to be

triggered once only. That is only the first predicted Out-of-

bed label in an input sequence after a Lying or Sitting-on-bed

state triggers the signal, regardless of the duration of the state.

F. Baseline Method

Our proposed bed exit classification algorithms is evaluated

against a threshold based classifier recently developed in [16]

to recognize bed exits. This method considers acceleration data

processed in multiple stages and was evaluated using only

healthy adult volunteers [16].

This algorithm recognized bed exit events after detection

of a lying to sitting on bed and sitting to standing postural

transition (PT) sequence. The first transition used filtered

vertical acceleration (av) data while the second considered

filtered sin(θ) where θ is the body tilting angle with respect

to the vertical. Another parameter considered was the change

in RSSI values with respect to a fixed antenna. As a person

sitting or standing becomes farther or closer to the fixed

antenna, a perceivable negative or positive difference in RSSI,

respectively, is observed.

III. EXPERIMENTAL SETTING

A. People and Location

We conducted a trial with fourteen elderly volunteers from

66 to 86 years old. The trials were performed at a clinical

room which was instrumented with antennae positioned to

closely resemble a hospital room deployment; i.e. antennae

antenna4

antenna3

(inclined, 2.6m. 

above bed)

bed

4.00m

3
.3
m

chair

shelves

antenna2

antenna1

(a)

antenna3

(inclined, 2.7 m 

high)

antenna2

(inclined, 2.6m. 

above bed)

bed

4.00m

3
.3
m

chair

shelves

antenna1

(b)

Fig. 4. Different room configurations used for trials (a): First room
configuration (RoomSet1), (b): Second room configuration (RoomSet2).

were located in non-obstructive positions on the walls and

ceiling. For this reason, most some activities resulted in the

patient being away from the direction of maximum radiation

from reader antennas or being too far from the closest antenna.

This constraint affected the frequency of samples collected as

well as resulting in incomplete data segments.

We considered two different room configurations as prac-

tical deployment options. Antennae were strategically located

to best fit each of the room arrangements with the constraint

of ceiling and wall positioning of antennae. The first room

configuration (RoomSet1), included one antenna at ceiling

level (antenna3), and three antennae located on walls, which

directly covers the bed area and most of the room area. The

second room configuration (RoomSet2) included two antennae

at ceiling level (antenna2 and antenna3) and dispensed with

one wall level antenna, this disposition covered the area of

the bed, its vicinity and covered the area over the arm chair

as shown in Figure 4.

B. Experimental Procedure

Each volunteer wore a garment with the sensor attached

over the sternum, as shown in Figure 1(b). Each subject was

directed to perform an average of five sets of activities. Each

set of activities included a mixture of the following:

• Lying on bed (in any position of the subject’s choosing

such as to the side or supine position), sitting on bed,

getting out of bed, getting into bed
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TABLE II
RoomSet1 AND RoomSet2 GENERAL INFORMATION.

Characteristic RoomSet1 RoomSet2

Number of antennae 4 3

Number of activity sets 60 27

Number of subjects* 10 5

Number of observations 52459 22619

*one subject participated in both datasets

• Sitting down on arm chair, getting up from arm chair,

sitting on arm chair

• Walking

There were no additional instructions given about the man-

nerisms for conducting activities and thus resulted in different

gait, speed and posture transition time for each subject. Volun-

teers were also instructed to lie down comfortably. They were

either in supine position or on their sides. All the activities

were annotated by an observer in real time.

We evaluated two datasets each corresponding to the deploy-

ments illustrated in Figure 4. Table II describes the differences

in for both datasets. Data from both datasets was used to

generate the features described in Section II-D before being

processed by the classifier for automatic activity recognition.

We evaluated the performance of the system, accuracy,

sensitivity and specificity given in (4), (5) and (6) respectively,

to correctly predict observation labels and alert in case of

bed exit events. The ARS (activity recognition system) perfor-

mance was evaluated via a 10-fold cross validation of our two

datasets; BEAS (bed exit alert system) was evaluated using

ARS test data output from the 10-fold partitioning.

Accuracy =
TP + TN

TP + FP + FN + TN
.100 (4)

Sensitivity =
TP

TP + FN
.100 (5)

Specificity =
TN

TN + FP
.100 (6)

In (4), (5) and (6), for any given activity of interest, true

positives (TP) refers to labels correctly classified as the activity

of interest; true negatives (TN) are labels of other activities

correctly excluded; false positives (FP) are all false alarms or

other activities wrongly classified as our activity of interest

and false negatives (FN) are all misses or observations of our

activity of interest wrongly labelled.

IV. RESULTS

A. Reading Rate Variations

The experimental results are largely dependant on the timely

powering of the sensor as explained previously (Section II-B).

The translation and body motion of the sensor bearer creates

variations in readings due to distance changes to antennae and

other factors such as multipath. These factors affect the reading

rate due to inadequate power to operate the sensor as well as

the resulting extended power-up time.

TABLE III
ANTENNA RANGE FROM COLD START (METERS)

Response Time Window (s)

Deviation angle from
antenna front (degrees)

2 5

0 1.5 2.0

30 1.37 1.58

60 0.92 1.35

90 0.40 0.47

[90 180> 0 0

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

Antenna Range From Cold Start

 

 

5 second cold start range

2 second cold start range

Fig. 5. Antenna range from cold start for two time windows: 2 s (blue) and
5 s (red). Distance measured in the horizontal plane in meters.

We have tested the read range of the W2ISP from a cold

start measures from our critical antennae (those located on

the ceiling) over two fixed time windows (see Table III). A

cold start is where the reservoir capacitor of the Wearable

WISP has been discharged after a time t∗ without RF exposure

(in our case t∗ ≥ 10 s). We evaluated read range using

a ceiling mounted antenna and a W2ISP located at 2.5 m

and 1.4 m, respectively, above ground level. The antenna

had an inclination of 50◦ from the vertical. We considered

measurements every 30◦ from the front of the antenna and

two time windows of 2 and 5 s for the sensor to gather power

and respond at maximum distance to the antenna as shown

in Table III and Figure 5. The sensor can send information

from cold start 1.5 m away from the antenna in less than 2 s

when directly in front of the antenna; an increase of deviation

from the front of the antenna results in a shorter range for the

sensor to be able to respond in that time window.

B. Experimental Results

The manually labelled data (truth) was compared with pre-

dicted data. Table VII shows overall accuracy for both datasets,

and a percentage comparison of the composition of both

datasets in terms of collected observations. We can observe

that both datasets achieved high overall accuracy. In the case
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TABLE V
NEAR BED RELATED ACTIVITY RECOGNITION IN BOTH DATASETS

Activities RoomSet1 (%) RoomSet2 (%)

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

Lying 99.62±0.25 99.74±0.21 99.43±0.59 97.45±4.08 98.15±4.17 94.66±5.71

Sitting on bed 96.37±1.94 92.51±6.11 97.78±1.07 94.67±6.55 78.28±11.42 96.08±5.35

Out of bed 96.62±2.02 87.97±4.99 97.76±2.09 96.07±5.64 71.84±12.61 98.04±3.33

TABLE IV
ARS OVERALL ACCURACY AND RELATIVE COMPOSITION OF EACH

LABEL IN RESPECTIVE DATASETS (%)

RoomSet1 RoomSet2

ARS Overall Accuracy 96.34±1.94 94.14±6.56

Composition for Lying 59.04 88.67

Composition for Sitting on bed 28.86 7.11

Composition for Out of bed 12.09 4.21

TABLE VI
BED EXIT RECOGNITION IN BOTH DATASETS, RESULTS IN %

Method Dataset Accuracy Sensitivity Specificity

BEAS
RoomSet1 84.55±6.78 78.24±12.6 87.33±5.35

RoomSet2 86.9±8.85 90.14±13.47 86.57±11.11

Baseline RoomSet1 68.28±5.9 14.45±15.4 91.14±5.85

[16] RoomSet2 69.6±8.36 19.02±19.72 93.36±4.8

of RoomSet2 the highly accurate result is partly due to the

greater composition of Lying observations (> 88%). Samples

from lying states achieve a greater prediction accuracy than

other labels in that dataset (see Table VII). This disparity in

observations is also due to the lack of observations (sensor

reads) in positions other than lying attributed to the change in

antenna disposition. The lack of reads result from the distances

between the W2ISP wearer and antennae being maximised

as the antenna facing the subject sitting on bed (antenna4

in RoomSet1) is moved to being almost on top of the subject

(antenna3 in RoomSet2) as seen in Figure 4. From this ceiling

position, readings can be hindered due to obstruction by folds

in the clothing breaking the ground plane of the sensor or

other body parts such as the head obstructing RF signals.

In addition, we have to consider the reduced number of

antennae. The likelihood of having a feeding antenna in range

to generate a response from cold start reduces as the subject

moves from one position to the next, as demonstrated in

SectionIV-A.

Comparison of both datasets clearly indicates that RoomSet1

data achieves better accuracy (≥ 96%), sensitivity (≥ 88%)

and specificity values (≥ 97%) as shown in Table V. All

states achieved high accuracy values (> 94%), particularly in

RoomSet1, in which sensitivity values were noticeably higher

than those in RoomSet2. These results indicate that the system

is able to differentiate between subjects Lying and Sitting-

on-bed, which is an added advantage in patients that are not

supposed to get up from bed unsupervised, especially at night

TABLE VII
BED EXIT RESULTS FROM PREVIOUS STUDIES

Study Author Sensitivity(%) Specificity(%)

Hilbe [11] 96.0 95.5

Bruyneel [10] 91.0 100.0

Ranasinghe [16] 90.4 93.8

time where a Sitting-on-bed state implies that the patient is

probably attempting to go to the toilet. Another important issue

to notice is that in all cases the level of specificity or false

alarms is relatively low (≥ 94.6%), explicitly in RoomSet1

where specificity ranges from 97.8% to 99.4%.

We evaluate the BEAS performance using ARS predictions.

The results are shown in Table VI where accuracy for both

datasets is > 84%. Results indicate that RoomSet1 deployment

achieves lower performance than that of RoomSet2. However,

these results seem to contradict those of individual label

predictions where RoomSet1 achieved higher performance

values for all labels when compared to data from RoomSet2.

The explanation lies in the higher numbers of scattered label

recognition errors resulting in increased FP and FN values in

RoomSet1. Furthermore, in RoomSet2, the low composition of

Out-of-bed observations does not reduce performance of bed

exit classifications as only one predicted label is enough to

trigger an alarm.

We compare these results with those of the Baseline method

applied to both datasets. We notice that accuracy and sen-

sitivity values are much lower than those of BEAS because

the baseline method requires detection of PTs in order to

perform its threshold based classification. The method fails to

detect most PTs due to incomplete data from elderly subjects,

producing many FNs.

Furthermore, our proposed bed exit classification algorithm

achieved a low false alarm rate (specificity > 86%). This result

is important as a high false alarm rate can cause frustration

in caregiver staff affecting the acceptance of the intervention.

Although the baseline method depicts a larger specificity, it is

only because of a general failure to detect possible events to

evaluate rather than the classifier not producing FPs.

Moreover, we compare these results with previously de-

veloped fall prevention devices [10], [11], [16] shown in

Table VII. Hilbe et al. [11] achieved sensitivity and specificity

values in the order of 95%. The system is composed of a

pressure sensor mounted on the bed rails; however, bed rails

are not recommended as a method to prevent falls as it may

increase the height of a fall and the risk of related injuries

2013 IEEE International Conference on RFID

196



[3], [29]. Bruyneel et al. [10] used multiple sensors (presence,

movement, temperature) built in a bed mat. This method

achieved no false alarms but has an increased associated cost

due to demands of servicing and cleaning as the product is

exposed to body fluids from patients. Moreover, mats are

prone to displacement due to body movement and this method

confirms a bed absence signal after a 2 minute delay. Similarly,

in the baseline method [16] a 20 s data segmentation strategy

is employed resulting in maximum response delays of 20 s.

In contrast to these methods, our proposed system achieves

comparative results and offers additional advantages as it is

wearable, wireless, inexpensive, maintenance free and free of

heavy data cleaning and conditioning steps such as filtering;

therefore, free of processing delays that might withhold the

timely execution of a high risk alarm [10], [16].

C. Wearability of the Wireless Sensor Equipment

This section investigates the users perception on the wear-

ability of the device among the elderly volunteers. A short

questionnaire filled out by each subject after their trial. The

questionnaire was designed based on the work of [30] which

identified several factors for evaluating wearable sensors. In

our study, we focused on the use of the equipment and the

restrictions on freedom of movement of the user while wearing

the equipment. The questions were awarded a score from

an 11 level point system (0-10). Although the questions are

formulated in either positive or negative statements, in all

cases a score of 10 demonstrate complete satisfaction on both

question sets. The questions for measuring the wearability of

the W2ISP were:

1) Wearing the equipment was no problem.

2) I just forgot I am wearing it.

3) I am satisfied using the equipment.

4) I find the equipment easy to use.

The specific questions for measuring freedom of movement

were:

5) How did you experience wearing the equipment while

performing activities?

6) Were you hindered by the equipment while walking?

7) Were you hindered by the equipment while sitting?

8) Were you hindered by the equipment while lying?

The tabulated results (Table VIII) show great satisfaction

towards the equipment and its wearability. In particular the

results indicate that the elderly volunteer participants were not

constrained or obstructed by the device while performing their

activities. The system achieved average scores of 9.8 and 9.7

for both question sets. In general female subjects provided

higher scores on all questions than male subjects with the

exception of Question 8. Furthermore female responses to

Question 8 has the largest SD as well as the lowest score,

perhaps indicating that females may have felt some discomfort

when lying with the sensor attached over the breast bone.

However, further studies (such as a focus group) will be

required to develop a more definitive conclusion. Overall, these

results overwhelmingly support the use of the W2ISP as a

wearable and easy to use device, suitable for use with elderly.

TABLE VIII
SCORE AWARDED TO EQUIPMENT ACCEPTANCE AND FREEDOM OF

MOVEMENT: AVERAGE ± SD

Trials Population

Question Overall Males Females

1 9.88±0.48 9.5±1.00 10±0.00

2 9.7±0.84 9.5±1.00 9.76±0.83

3 9.76±0.66 9.5±1.00 9.84±0.55

4 9.88.±0.48 9.5±1.00 10±0.00

Average Equipment 9.8±0.63 9.5±1.00 9.9±0.5

5 9.7±0.68 9.5±1.00 9.76±0.6

6 9.88±0.48 9.5±1.00 10±0.00

7 9.88±0.48 9.5±1.00 10±0.00

8 9.29±1.57 9.5±1.00 9.23±1.73

Average Freedom of
Movement

9.69±0.92 9.5±1.00 9.75±0.92

V. CONCLUSION

In this article, we provide a novel approach to bed exit

classification for mitigation the risk of falls. We considered

the use of raw signals i.e. with no preprocessing such as fil-

tering, to achieve bed exit alarming capability. We proposed a

classification algorithm based on CRFs to correctly predict the

label of each observation and ultimately distinguish whether

the subject has exited the bed using these labels. The system

was successful evaluated using two datasets.

The results demonstrate that the proposed system has similar

performance as more expensive, bulky bed exit alarm sys-

tems requiring regular maintenance.In addition, our proposed

classification algorithm is a significant improvement over the

threshold based algorithm. Furthermore our approach achieves

high accuracy with incomplete and noisy raw data.

Furthermore, the system can be developed for real time

processing as the proposed classification algorithm is capable

of making a prediction for every observation. In addition, the

system is capable of multi-tag reading, thus, capable of multi-

patient monitoring and alarming. In terms of responsiveness

our system provides minimal delay, however this does not

guarantee a prompt intervention from respondents (carers).

Further trials are needed to establish the effectiveness of our

approach as a falls prevention strategy.

The use of two room configurations shows that the use

of more antennae does not necessarily improve the overall

performance of the system. The use of a more focused antenna

placement as in RoomSet2 where antennae were particularly

oriented towards high falls risk locations such as the bed and

chair achieved higher performance as opposed to RoomSet1

which covered a wider horizontal plane. Furthermore having

a unnecessarily larger area of coverage also lead to more

scattered errors due to the relatively large numbers of readings

obtained from locations outside the vicinity of the bed. How-

ever having a more a more focused area of coverage makes

the system more sensitive to a varying room configurations.

However, given that clinical rooms in the same hospital or

2013 IEEE International Conference on RFID

197



residential care environment have similar layouts, classifier can

be trained to adapt to new conditions.

This research also demonstrates the feasibility of using the

Wearable WISPs as an activity monitoring device. The use of

such device is clearly advantageous as an inexpensive, wire-

less, maintenance free device can easily be discarded when

exposed to a high risk infection environment unlike using bed

rails or bed mats. The feedback given from participants in the

study confirmed the device to be wearable and non-obstructive.

A practical implementation of the solution will however

imply a one time infrastructure cost of deploying commercial

UHF readers and antennae. Nevertheless, RFID hardware

prices have been falling as RFID technology is more widely

adopted. The only recurrent cost component is the tags,

however, the cost of the tags are continuing to diminish. At

present the W2ISP is expected to cost around $2 to $3 when

mass produced [24], [31].

Finally, our group is currently working on collecting infor-

mation from real patients in their clinical environment to verify

the performance of this study with real patient data. Our future

work will also involved extending the classification algorithms

to include the prediction of other risk related activities such as

getting up from a chair, going to the toilet and walking without

a walking aid. In order to improve classification accuracy

we are currently considering support vector machine based

algorithms that incorporate learning so that we can move

towards a system that evolves over time.
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