
  

 

Abstract— Falls related injuries among elderly patients in 

hospitals or residents in residential care facilities is a significant 

problem that causes emotional and physical trauma to those 

involved while presenting a rising healthcare expense in 

countries such as Australia where the population is ageing. 

Novel approaches using low cost and privacy preserving sensor 

enabled Radio Frequency Identification (RFID) technology 

may have the potential to provide a low cost and effective 

technological intervention to prevent falls in hospitals. We 

outline the details of a wearable sensor enabled RFID tag that 

is battery free, low cost, lightweight, maintenance free and can 

be worn continuously for automatic and unsupervised remote 

monitoring of activities of frail patients at acute hospitals or 

residents in residential care. The technological developments 

outlined in the paper forms part of an overall technological 

intervention developed to reduce falls at acute hospitals or in 

residential care facilities. This paper outlines the details of the 

technology, underlying algorithms and the results (where an 

accuracy of 94-100% was achieved) of a successful pilot trial. 

I. INTRODUCTION 

Falls in hospitals are common and costly. It has 
previously been reported that fallers with dementia and 
delirium have significantly longer average length of stays 
(ALOS) and costs than age, gender and Diagnostic Related 
Groups (DRG) matched non fallers [1]. A UK report 
examining 200,000 incident reports over 12 months indicated 
that inpatient falls were the most common (40%) type of 
safety incident [2]. Falls were said to be directly responsible 
for 26 patient deaths, 530 hip fractures and about 1000 
fractures. The psychological sequelae of falls to the 
individual include anxiety, depression, loss of confidence and 
fear of falling and ultimately a downward spiral of decline in 
health [3]. The occurrence of a fall also impacts negatively on 
staff and family resulting in feelings of fear, guilt, anxiety, 
defensive actions and at times these contribute to conflict and 
result in complaints, coroner’s inquests and litigation [3].  

There is a definite need for effective, evidence based 
interventions in acute hospitals, especially for older patients 
and those with cognitive impairment as highlighted in a 
recent systematic review and meta-analysis and technological 
solutions may be a way forward [3]. While many studies 
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have investigated the use of body worn sensors in laboratory 
settings [4-6] and free-living environments [6-8] to detect 
falls or assess falls risk, very few have investigated falls 
prevention in acute hospital or residential care environments. 
Furthermore, the sensors employed have been battery 
powered, expensive, large and relatively heavy units 
requiring the wearer to recharge the unit during sleep or 
change batteries regularly. Nurse or carer staffing levels are 
lowest at night when patient confusion is increased and falls 
rates high [9] and therefore, a method that requires removal 
of the device at night is not practical. Moreover, cumbersome 
sensors need constant maintenance (e.g., battery replacement) 
and users’ cooperation. Therefore such an approach is not 
effective in hospital or residential care environments, 
especially where many patients or residents have cognitive 
impairments.  

In contrast, our approach relies on using a small, battery-
less, low cost, ultra-lightweight, continuously wearable 
sensor enabled RFID tag that only requires a single 
attachment site over clothing. The device is capable of 
monitoring patients in real-time, at any location while 
preserving the privacy of the individual often violated by 
approaches that relies on cameras [10]. More significantly 
our approach does not require user cooperation and 
maintenance to ensure its success. Unlike other approaches, 
the task of activity classification is moved to powerful 
systems such as the backend devices and therefore the power 
consumption and implementation of the sensor is minimal. In 
this paper we present the results of the initial trial conducted 
to evaluate the ability of the device to remotely and 
unobtrusively monitor the activities of healthy subjects and to 
classify identified high risk activities. 

II. RFID PRIMER 

RFID is a wireless technology capable of unique and 
automatic identification of objects or people. In contrast to 
traditional identification technologies such as bar codes, 
RFID is a contactless technology that operates without line-
of-sight restrictions [11]. All modern RFID systems 
infrastructure can be categorized into three primary 
components, namely tags, readers, and backend systems. 

 Tags: Also called labels, contains a microchip that stores 
unique identifying information of the object/person to 
which the tag is attached and an antenna for 
communicating the information via radio waves. When a 
tag passes through a radio frequency (RF) field generated 
by an RFID reader, the tag reflects (or transmits) back to 
the reader the identifying information. Passive tags do not 
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have their own power source and obtain power from the 
electromagnetic (EM) radiation emitted by readers and 
therefore have an indefinite operational life.  

 RFID Reader: They are responsible for powering and 
communicating with tags [11]. RFID readers are 
generally placed at fixed locations with their antennae 
strategically placed to read tags passing through their EM 
field. RFID readers can read multiple co-located tags 
simultaneously (e.g., up to several hundred tags per 
seconds can be read by a modern RFID reader). The 
reading distance ranges from a few centimetres to more 
than 10 meters, depending on the types of tags, the power 
transmitted from the readers, and so on [11]. 

 Backend Systems: The readers are connected to a 
computer network in which the data are collected, 
processed, stored and shared (nursing staff, doctors, etc.) 

III. METHODS 

A. Technology 

There are three key elements to the proposed novel falls 
prevention system: i) Wireless Identification and Sensing 
Platforms (WISPs) for activity monitoring and identification, 
ii) RFID readers and antennae infrastructure (reading 
WISPs), and iii) Patient Monitoring Software.  

WISP: The Wireless Identification and Sensing Platform 
is a wearable device [12] that has the capabilities of RFID 
tags, but also support a tri-axial accelerometer sensor 
(ADXL330) with a minimum full scale range of +/- 3g. Like 
any passive RFID tag, WISP is powered and read by a 
standard off-the-shelf Ultra High Frequency (UHF) RFID 
reader. To an RFID reader, a WISP is an RFID tag; but inside 
the WISP, the harvested energy operates a 16-bit low power 
microcontroller (MSP430F2132). WISPs can be read at 
moderate range (about 3 m) and are estimated at around $1 
when mass manufactured [13]. The WISP devices weigh 
approximately 2 grams. 

RFID Readers and antennae infrastructure: Speedway 
® Revolution Reader (190 × 175 × 30 mm, mass, 680 g), 
used in the design is produced by Impinj incorporation. Each 
reader multiplexes between 4 antennae (260 × 260 × 33 mm, 
mass 1 kg) to transmit and receive RF signals (920 MHz - 
926 MHz in Australia) from tags.  

Patient Monitoring Software: Data transmitted over the 
network by readers are received by the middleware in the 
Patient Monitoring Software for processing and persistent 
storage. The monitoring software will automatically identify 
high falls risk related activities in real-time. These high risk 
activities by patients will result in the Patient Monitoring 
Software generating an automated alert (who, when, where, 
and doing what) via a paging system to pagers carried by 
staff to seek attention from a clinician to mitigate the risk and 
automatically record the incident at the same time. 

B. Subjects 

The data was obtained using 10 healthy adult volunteers, 
aged from 23 to 30 years with a mean age of 26.4 years and 
standard deviation of 2.12 years. Each volunteer was given 
scripted routines of activities of daily living (ADLs) that 
incorporated high risk activities we have identified (see 

Section IV). Each volunteer was given three separate scripts 
with random ordering of the ADLs and high risk activities. 
The algorithms were not customized to each subject and 
relied on training data instead. 

C. Instrumentation 

The WISP tags attached over the sternum (where they 
were placed outside of their normal attire) and were used to 
collect sensor data during the trial. These devices are small 
and portable and pose no risk to subjects. The data were 

streamed with a sensitivity of 1.5 g (where g = 9.81 ms
-2

). 
However the samples of acceleration data received per unit 
time is limited by the read rate (reads/s) of the WISP. The 
read rate is a function of its distance from the RFID reader 
antenna. Therefore the acceleration data received were post 
processed to achieve a consistent sampling rate of 40 Hz per 
channel. The three axes of the WISP, when fastened onto the 
subject’s chest, are aligned with the anteroposterior (x-axis), 
medio-lateral (y-axis) and longitudinal or dorsoventral (z-
axis) axes of the subject’s frame of reference. 

IV. HIGH RISK ACTIVITY EXTRACTION 

Falls commonly occur around patients’ or residents’ beds, 
bathrooms and/or toilets [14]. The majority of falls are not 
witnessed with patients not seeking assistance when 
transferring or toileting even when they are carefully 
instructed [3]. Consequently, we have identified the 
following high risk activities as eventually leading to falls: i) 
entering into a toilet or a bathroom facility without the aid of 
caregiver or leaving a patient’s room without the aid of a 
caregiver; ii) getting up from a chair without the aid of a 
caregiver; iii) activity involving getting off a bed; and iv) 
mobilizing without a walking aid. 

A. Entering or Leaving a Patient Room or a Rest Room 
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Figure 2.  (a) The experiment setup, (b) illustrates the centre-crossing at the 

two antennae for a person going from InOut.  Here the crosses and circles 

represent estimations at Antenna 1 and Antenna 2, respectively. In Out is 
indicated by a centre crossing at Antenna 1 followed by Antenna 2. 

The projection of the tag velocity vector on to the line of 
sight between the tag and the reader can be estimated by 
Time Domain Phase Difference of Arrival (TD-PDOA) 
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Figure 1. Illustration of TD-PDOA measurement 
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measuring the phase of a tag at different time moments at the 
same frequency [15] as illustrated in Fig. 1. We can measure 
the difference of phase (φ2-φ1) at different times and attribute 
it to the path difference d2 - d1. Then it can be shown that the 
radial velocity of the RFID tag is given by (1) where λ=c/f (c 
is the speed of light and f is the frequency of the transmitted 
wave from the reader). The negative sign in (1) defines 
direction of the radial velocity in the derivation as being 
opposite to the change in distance of the tag at time t1 and t2. 

Fig. 2 shows the time sequence of radial velocity 
evaluated at two overhead antennae where the direction of 
the radial velocity changes from negative to positive as the 
person moves across the centre crossings of Antenna 1 and 
Antenna 2. Therefore by using two overhead antennae as 
illustrated in Fig. 2(a), a person’s traversing direction can be 
identified by analyzing and comparing the centre-crossing 
evaluated by both antennae. Here, the antennae are hung up 
over the head and lean in around 50 degrees. For this 
experimental setup, paths followed by volunteers were not 
specified and thus were random. We performed 80 
translations to evaluate the effectiveness of our approach. 

B. Getting Up or Sitting Down on a Chair 

It is possible to identify two phases in standing-to-sitting 
(StSi) and sitting-to-standing (SiSt) transitions: i) an initial 
leaning forwards followed by; ii) a leaning backwards; (SiSt 
follows the opposite order). In both StSi and SiSt transitions, 
the displacement of   (inclination angle between the trunk 
and vertical axis) approaches a maximum value and then 
recovers [9]. A similar trend in      was also observed, as 
indicated in Figure 3 and provided a non-linear scale to 
increase the sensitivity of the results. 

The candidate StSi and SiSt postural transition (PT) were 
detected in terms of the pattern of     . As shown in Fig. 
3,     is the estimation of time at which PT of StSi or SiSt 
occurs (considered as the time corresponding to the 
maximum of     ). The transition duration (TD) is the time 
interval estimated from the beginning of the leaning forwards 
phase (  ) to the end of the leaning backwards phase (  ). 
Hence           , where      and     are the time related 

to    and   , which are estimated as the time corresponding to 
the two nearest minima of      before and after    , 
respectively. Unlike the approach in [6] which relied on a 
gyroscope to evaluate θ accurately, we only require an 
estimate. The value of θ can be estimated because the 
contribution of acceleration components from the posture 
transition can be assumed to be negligible compared to that 

of gravity. Therefore      -   -                 -                  . 

In [6, 7] the vertical displacement of the sensor at the end 
of the SiSt and StSi transition is used to differentiate between 
the two PTs. However, the WISP tag based approach could 
not be used to reliably report the vertical displacement 
because of the intermittent replies from the WISP and the 
partial concealment of the WISP from the antenna collecting 
the data from the WISP during the SiSt and StSi transitions. 

However, we were able to study the RSSI (received 
signal strength indicator), which is the strength of the signal 
reflected from the WISP and detected at the antenna, as a 
method of estimating the distance of the person to the 
antenna and hence whether the person is standing or sitting at 

the end of the PT. RSSI is reported by the reader in steps of 
0.5 dBm for each received signal from the WISP.  A sensor at 
any given time will have different RSSI readings reported by 
different antennae and therefore each antenna is a reference 
point for location and displacement of the WISP.  RSSI based 
method has several downsides as it is affected by the 
environment such as the electromagnetic properties of objects 
in the surroundings and multipath effects [15]. However we 
found that in short range measurements RSSI was adequate 
to successfully discriminate between SiSt and StSi 
transitions.   

 

Figure 3: Detection of Sit-to-Stand posture transitions showing      (solid 
black line) and RSSI values (dashed blue line). 

To classify between these two transitions, we employed a 
threshold based approach using the information from TD, 
     and the received signal strength indication (RSSI).  
After filtering      to remove noise using a band pass direct-
form II second-order Butterworth filter with cut-off 
frequencies at 0.04 and 0.7 Hz, the aforementioned three 
components are evaluated. 

First, a true PT has a TD above 1.725 s and      larger 
than 0.275 at    .  Second, the RSSI (inversely proportional 
to the quadruple of distance [15]) indicates that the distance 
variation from the antenna due to the displacement of the 
body will result in the RSSI reading decreasingly or 
increasingly depending on the location of the antenna relative 
to the person.  In this environment, antennae are located 
above 2 m over floor level. As a result, when standing, the 
distance from the WISP to the antenna is shorter than when 
the person is sitting, causing a negative gradient during a StSi 
and positive gradient during a SiSt transition (see Fig. 3). 

C. Getting In and Out of Bed 

A classification algorithm for getting into and out of bed 
events was developed from the early work in [6].  The lying 
state was discriminated from sitting or standing by analysing 
the acceleration readings from the anteroposterior axis (xg) 
where readings of approximately 0 and 1g correspond to 
lying and standing or sitting respectively.  The signal was 
filtered with a direct-form II second-order Butterworth low 
pass filter with cut-off frequency at 0.16Hz, eliminating noise 
and other components such as walking. 

PTs of sitting-to-lying and lying-to-sitting were detected 
based on threshold values before and after the event. The 
sitting-to-lying PT was detected using the pattern of the 
derivative of xg. Here     is the estimated time at which 
sitting-to-lying occurs and corresponds to the minimum of 
the derivative of xg while     and     are the times 

corresponding to two nearest maxima of the derivative of xg 
before and after    , respectively. This PT was correctly 

6404



  

classified as such if the mean of xg before and after its      
was above 0.7g and below 0.4g respectively. 

D. Mobilizing without a Walking Aid 

Walking was detected by analyzing the vertical 
acceleration component every 5 seconds; the signal was 
filtered to distinguish the stepping patterns by isolating 
signals within 0.62 and 5 Hz approximately. To detect a 
walking period, negative peaks below a threshold of -0.05 g 
were considered as possible steps if 2 or more consecutive 
steps with intervals between peaks of 0.25 to 2.25 seconds 
were present in the window time. 

 
Figure 4: A person walking without a walking aid 

Activity of a patient walking without an aid was detected 
if a person was found to leave or enter a room without their 
walking aid. A person identified as moving through a 
threshold without also simultaneously detecting the walking 
aid moving across the threshold signalled the positive 
identification of a subject mobilizing without a walking aid. 
Inference was achieved by using the tag direction algorithm 
which indicated the direction of movement and the resultant 
acceleration aR reported by the WISP attached to the walking 
aid which indicated whether the aid was being used. A value 
of for aR around 1 g (gravity) confirmed that the walking aid 
was not being used (as shown in Fig. 4) where aR is given by 

      
    

    
 . 

TABLE 1. SENSITIVITY AND SPECIFICITY RESULTS 

PT Sensitivity Specificity 

Sitting down on a chair (standing-to-sitting) 92.2% 97.9% 

Getting up from chair (sitting-to-standing) 90.4% 94.0% 

Getting into bed (sitting-to-lying) 100% 100% 

Getting out of bed (lying-to-sitting) 100% 100% 

Entering a room/restroom 100% 100% 

Leaving a room/restroom 100% 100% 

Walking without a walking aid 100% 100% 

V. RESULTS 

Performance was evaluated using sensitivity and 
specificity measures (see Table 1). Overall, subjects 
performed 197 PTs including StSi, sitting-to-lying, lying-to-
sitting and SiSt with 99 lying conditions: supine and prone 
position and left and right side lying. Relatively high 
sensitivity and specificity for detection of getting into bed as 
well as getting out from bed were obtained (see Table 1). We 
also demonstrated a high accuracy (100%) in identifying PTs 
related to mobilizing.  

VI. CONCLUSIONS 

Our work shows that WISP tags have the potential to 
provide a technological intervention to prevent falls in acute 

hospitals. We have shown that their performance is 
comparable to the existing systems using wearable and 
battery-powered sensors for human activity monitoring [4-8], 
but without the drawbacks of user involvement, expense, and 
maintenance. Currently our team is developing a wearable, 
concealable and flexible antenna to allow the development of 
a more ergonomic WISP with increased read range. We are 
also currently working with clinicians at the Geriatric 
Evaluation and Management (GEM) unit at the Queen 
Elizabeth Hospital, South Australia to conduct a clinical trial 
to validate our approach with frail patients and clinical staff. 
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